File size: 6,798 Bytes
a8a9533
43606a3
f58e466
d13f9cf
b5ae065
 
 
b17a5c8
d13f9cf
144112e
 
20a343f
144112e
486ffa7
20a343f
11983d2
 
c087a6b
 
 
 
305114d
c087a6b
 
b1253fd
c087a6b
 
ff934bb
 
 
 
 
 
 
 
 
c087a6b
 
 
 
7451c63
c087a6b
 
 
 
 
 
 
 
b5ae065
c087a6b
 
ebe2ba8
b07f0b1
ebe2ba8
c087a6b
b5ae065
 
 
01b06a3
c087a6b
 
241ba68
4a66e10
b17a5c8
c087a6b
d13f9cf
a8a9533
c087a6b
144112e
 
 
 
 
 
 
 
 
7451c63
 
 
144112e
 
 
 
 
 
486ffa7
144112e
 
623e026
 
144112e
ca2ac64
144112e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c087a6b
 
144112e
c087a6b
 
 
 
 
 
b5ae065
 
 
 
 
 
a8a9533
 
b5ae065
 
 
 
 
 
 
 
 
 
 
b07f0b1
 
 
 
58c3781
 
b07f0b1
 
 
 
 
 
 
 
d5625b9
 
987575f
 
70cdf7a
 
f1cd31d
 
b07f0b1
 
 
b5ae065
 
 
 
 
 
 
 
 
 
 
 
01b06a3
c202241
a8a9533
c202241
 
 
 
 
 
 
 
a8a9533
c202241
 
 
 
 
 
 
c087a6b
d885316
b5ae065
a8a9533
 
 
b5ae065
 
 
c087a6b
 
4a66e10
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import { env } from "$env/dynamic/private";
import type { ChatTemplateInput } from "$lib/types/Template";
import { compileTemplate } from "$lib/utils/template";
import { z } from "zod";
import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints";
import endpointTgi from "./endpoints/tgi/endpointTgi";
import { sum } from "$lib/utils/sum";
import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels";

import type { PreTrainedTokenizer } from "@xenova/transformers";

import JSON5 from "json5";
import { getTokenizer } from "$lib/utils/getTokenizer";
import { logger } from "$lib/server/logger";

type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>;

const modelConfig = z.object({
	/** Used as an identifier in DB */
	id: z.string().optional(),
	/** Used to link to the model page, and for inference */
	name: z.string().default(""),
	displayName: z.string().min(1).optional(),
	description: z.string().min(1).optional(),
	logoUrl: z.string().url().optional(),
	websiteUrl: z.string().url().optional(),
	modelUrl: z.string().url().optional(),
	tokenizer: z
		.union([
			z.string(),
			z.object({
				tokenizerUrl: z.string().url(),
				tokenizerConfigUrl: z.string().url(),
			}),
		])
		.optional(),
	datasetName: z.string().min(1).optional(),
	datasetUrl: z.string().url().optional(),
	preprompt: z.string().default(""),
	prepromptUrl: z.string().url().optional(),
	chatPromptTemplate: z.string().optional(),
	promptExamples: z
		.array(
			z.object({
				title: z.string().min(1),
				prompt: z.string().min(1),
			})
		)
		.optional(),
	endpoints: z.array(endpointSchema).optional(),
	parameters: z
		.object({
			temperature: z.number().min(0).max(1).optional(),
			truncate: z.number().int().positive().optional(),
			max_new_tokens: z.number().int().positive().optional(),
			stop: z.array(z.string()).optional(),
			top_p: z.number().positive().optional(),
			top_k: z.number().positive().optional(),
			repetition_penalty: z.number().min(-2).max(2).optional(),
		})
		.passthrough()
		.optional(),
	multimodal: z.boolean().default(false),
	unlisted: z.boolean().default(false),
	embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(),
});

const modelsRaw = z.array(modelConfig).parse(JSON5.parse(env.MODELS));

async function getChatPromptRender(
	m: z.infer<typeof modelConfig>
): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> {
	if (m.chatPromptTemplate) {
		return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m);
	}
	let tokenizer: PreTrainedTokenizer;

	if (!m.tokenizer) {
		return compileTemplate<ChatTemplateInput>(
			"{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
			m
		);
	}

	try {
		tokenizer = await getTokenizer(m.tokenizer);
	} catch (e) {
		logger.error(
			"Failed to load tokenizer for model " +
				m.name +
				" consider setting chatPromptTemplate manually or making sure the model is available on the hub. Error: " +
				(e as Error).message
		);
		process.exit();
	}

	const renderTemplate = ({ messages, preprompt }: ChatTemplateInput) => {
		let formattedMessages: { role: string; content: string }[] = messages.map((message) => ({
			content: message.content,
			role: message.from,
		}));

		if (preprompt) {
			formattedMessages = [
				{
					role: "system",
					content: preprompt,
				},
				...formattedMessages,
			];
		}

		const output = tokenizer.apply_chat_template(formattedMessages, {
			tokenize: false,
			add_generation_prompt: true,
		});

		if (typeof output !== "string") {
			throw new Error("Failed to apply chat template, the output is not a string");
		}

		return output;
	};

	return renderTemplate;
}

const processModel = async (m: z.infer<typeof modelConfig>) => ({
	...m,
	chatPromptRender: await getChatPromptRender(m),
	id: m.id || m.name,
	displayName: m.displayName || m.name,
	preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt,
	parameters: { ...m.parameters, stop_sequences: m.parameters?.stop },
});

const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
	...m,
	getEndpoint: async (): Promise<Endpoint> => {
		if (!m.endpoints) {
			return endpointTgi({
				type: "tgi",
				url: `${env.HF_API_ROOT}/${m.name}`,
				accessToken: env.HF_TOKEN ?? env.HF_ACCESS_TOKEN,
				weight: 1,
				model: m,
			});
		}
		const totalWeight = sum(m.endpoints.map((e) => e.weight));

		let random = Math.random() * totalWeight;

		for (const endpoint of m.endpoints) {
			if (random < endpoint.weight) {
				const args = { ...endpoint, model: m };

				switch (args.type) {
					case "tgi":
						return endpoints.tgi(args);
					case "anthropic":
						return endpoints.anthropic(args);
					case "aws":
						return await endpoints.aws(args);
					case "openai":
						return await endpoints.openai(args);
					case "llamacpp":
						return endpoints.llamacpp(args);
					case "ollama":
						return endpoints.ollama(args);
					case "vertex":
						return await endpoints.vertex(args);
					case "cloudflare":
						return await endpoints.cloudflare(args);
					case "cohere":
						return await endpoints.cohere(args);
					case "langserve":
						return await endpoints.langserve(args);
					default:
						// for legacy reason
						return endpoints.tgi(args);
				}
			}
			random -= endpoint.weight;
		}

		throw new Error(`Failed to select endpoint`);
	},
});

export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint)));

export const defaultModel = models[0];

// Models that have been deprecated
export const oldModels = env.OLD_MODELS
	? z
			.array(
				z.object({
					id: z.string().optional(),
					name: z.string().min(1),
					displayName: z.string().min(1).optional(),
				})
			)
			.parse(JSON5.parse(env.OLD_MODELS))
			.map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name }))
	: [];

export const validateModel = (_models: BackendModel[]) => {
	// Zod enum function requires 2 parameters
	return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]);
};

// if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself

export const smallModel = env.TASK_MODEL
	? (models.find((m) => m.name === env.TASK_MODEL) ||
			(await processModel(modelConfig.parse(JSON5.parse(env.TASK_MODEL))).then((m) =>
				addEndpoint(m)
			))) ??
	  defaultModel
	: defaultModel;

export type BackendModel = Optional<
	typeof defaultModel,
	"preprompt" | "parameters" | "multimodal" | "unlisted"
>;