File size: 5,072 Bytes
086820c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from matplotlib import cm 
import matplotlib.pyplot as plt
# from mpl_toolkits.axes_grid1 import make_axes_locatable

import numpy as np

# import onnx
import onnxruntime as ort
# from onnx import helper

import pandas as pd

from scipy import special

# import torch
# import torch.utils.data

import gradio as gr
# from transformers import pipeline


model_path = 'chlab/planet_detection_models/'

# plotting a prameters
labels = 20
ticks = 14
legends = 14
text = 14
titles = 22
lw = 3
ps = 200
cmap = 'magma'

def normalize_array(x: list):

    '''Makes array between 0 and 1'''
    
    x = np.array(x)
    
    return (x - np.min(x)) / np.max(x - np.min(x))

def load_model(model: str, activation: bool=True):
    
    if activation:
        model += '_w_activation'
    
    ort_session = ort.InferenceSession(model_path + '%s.onnx' % (model))
    
    return ort_session

def get_activations(intermediate_model, image: list,
                               layer=None, vmax=2.5, sub_mean=True):
    
    '''Gets activations for a given input image'''
    
    
    input_name = intermediate_model.get_inputs()[0].name
    outputs = intermediate_model.run(None, {input_name: image})
    
    output_1 = outputs[1]
    output_2 = outputs[2]
    
    output = outputs[0]
    output = special.softmax(output)
    
    # origin = 'lower'
    
    # plt.rcParams['xtick.labelsize'] = ticks
    # plt.rcParams['ytick.labelsize'] = ticks
    
    # fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
    
    # ax1, ax2, ax3 = axs[0], axs[1], axs[2]
    
    in_image = np.sum(image[0, :, :, :], axis=0)
    in_image = normalize_array(in_image)
    
    
    # im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
    if layer is None:
        activation_1 = np.sum(output_1[0, :, :, :], axis=0)
        activation_2 = np.sum(output_2[0, :, :, :], axis=0)
    else:
        activation_1 = output_1[0, layer, :, :]
        activation_2 = output_2[0, layer, :, :]
    
    if sub_mean:
        activation_1 -= np.mean(activation_1)
        activation_1 = np.abs(activation_1)
        
        activation_2 -= np.mean(activation_2)
        activation_2 = np.abs(activation_2)
    
    
    # im2 = ax2.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1, 
    #                  origin=origin)
    # im3 = ax3.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1, 
    #                  origin=origin) 
    # ims = [im1, im2, im3]
        
    # for (i, ax) in enumerate(axs):
    #     divider = make_axes_locatable(ax)
    #     cax = divider.append_axes('right', size='5%', pad=0.05)
    #     fig.colorbar(ims[i], cax=cax, orientation='vertical')
        
    # ax1.set_title('Input', fontsize=titles)
    
    # plt.show()
    
    return outputs[0], activation_1, activation_2


def predict_and_analyze(model_name, num_channels, dim, image):
    
    '''Loads a model with activations, passes through image and shows activations
    
    The image must be a pandas dataframe that can be made from a (C, W, H) numpy array
    using
    
    m,n,r = X.shape
    arr = np.column_stack((np.repeat(np.arange(c),w), 
                               X.reshape(c*w,-1)))
    df = pd.DataFrame(arr)
    
    
    image = 2d numpy array in shape (C, W*W)
    i.e. take a C,W,W array and reshape into (C, W*W)
    
    '''
    
    num_channels = int(num_channels)
    W = int(dim)
    
    image = image.read()
    image = np.frombuffer(image)
    image = image.reshape((num_channels, W, W))
    
    # W = int(np.sqrt(image.shape[1]))
    
    # image = image.reshape((num_channels, W, W))
    
    if len(image.shape != 4):
        image = image[np.newaxis, :, :, :]
        
    input_image = np.sum(image[0, :, :, :], axis=0)
    
    model_name += '_%i' % (num_channels)
        
    model = load_model(model_name, activation=True)
    
    output, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
    
    output = 'Planet prediction with %f percent confidence' % (100*output)
    
    return output, input_image, activation_1, activation_2


demo = gr.Interface(
    fn=predict_and_analyze,
    inputs=[gr.Dropdown(["regnet", "efficientnet"], 
                        value="efficientnet",
                        label="Model Selection",
                        show_label=True), 
            gr.Dropdown(["45", "61", "75"], 
                        value="61",
                        label="Number of Velocity Channels",
                        show_label=True), 
            gr.Dropdown(["600"], 
                        value="600",
                        label="Image Dimensions",
                        show_label=True), 
            gr.File(label="Input Data", show_label=True)],
    outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True), 
             gr.Image(label="Input Image", show_label=True), 
             gr.Image(label="Activation 1", show_label=True), 
             gr.Image(label="Actication 2", show_label=True)],
    title="Kinematic Planet Detector"
)
demo.launch(share=True)