jpterry commited on
Commit
135b090
·
1 Parent(s): 3c82907
Files changed (1) hide show
  1. app.py +2 -5
app.py CHANGED
@@ -83,7 +83,6 @@ def get_activations(intermediate_model, image: list,
83
  in_image = np.sum(image[0, :, :, :], axis=0)
84
  in_image = normalize_array(in_image)
85
 
86
-
87
  # im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
88
  if layer is None:
89
  activation_1 = np.sum(output_1[0, :, :, :], axis=0)
@@ -115,7 +114,7 @@ def get_activations(intermediate_model, image: list,
115
 
116
  # plt.show()
117
 
118
- return in_image, activation_1, activation_2
119
 
120
 
121
  def predict_and_analyze(model_name, num_channels, dim, image):
@@ -163,8 +162,6 @@ def predict_and_analyze(model_name, num_channels, dim, image):
163
  image = image[np.newaxis, :, :, :]
164
 
165
  assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
166
-
167
- input_image = np.sum(image[0, :, :, :], axis=0)
168
 
169
  model_name += '_%i' % (num_channels)
170
 
@@ -173,7 +170,7 @@ def predict_and_analyze(model_name, num_channels, dim, image):
173
  model = load_model(model_name, activation=True)
174
 
175
  print("Looking at activations")
176
- output, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
177
 
178
  print(output)
179
 
 
83
  in_image = np.sum(image[0, :, :, :], axis=0)
84
  in_image = normalize_array(in_image)
85
 
 
86
  # im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
87
  if layer is None:
88
  activation_1 = np.sum(output_1[0, :, :, :], axis=0)
 
114
 
115
  # plt.show()
116
 
117
+ return output, in_image, activation_1, activation_2
118
 
119
 
120
  def predict_and_analyze(model_name, num_channels, dim, image):
 
162
  image = image[np.newaxis, :, :, :]
163
 
164
  assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
 
 
165
 
166
  model_name += '_%i' % (num_channels)
167
 
 
170
  model = load_model(model_name, activation=True)
171
 
172
  print("Looking at activations")
173
+ output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
174
 
175
  print(output)
176