jpterry commited on
Commit
3ed2081
·
1 Parent(s): dd92ae1

went back to image and figure

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -126,31 +126,31 @@ def predict_and_analyze(model_name, num_channels, dim, image):
126
  plt.rcParams['xtick.labelsize'] = ticks
127
  plt.rcParams['ytick.labelsize'] = ticks
128
 
129
- fig, axs = plt.subplots(nrows=3, ncols=1, figsize=(8, 28))
130
 
131
- ax0, ax1, ax2 = axs[0], axs[1], axs[2]
132
 
133
- im0 = ax0.imshow(input_image, cmap=cmap,
134
- origin=origin)
135
  im1 = ax1.imshow(activation_1, cmap=cmap,
136
  origin=origin)
137
  im2 = ax2.imshow(activation_2, cmap=cmap,
138
  origin=origin)
139
 
140
- ims = [im0, im1, im2]
141
 
142
  for (i, ax) in enumerate(axs):
143
  divider = make_axes_locatable(ax)
144
  cax = divider.append_axes('right', size='5%', pad=0.05)
145
  fig.colorbar(ims[i], cax=cax, orientation='vertical')
146
 
147
- ax0.set_title('Input', fontsize=titles)
148
  ax1.set_title('Activation 1', fontsize=titles)
149
  ax2.set_title('Activation 2', fontsize=titles)
150
 
151
  print("Sending to Hugging Face")
152
 
153
- return output, fig
154
 
155
 
156
  if __name__ == "__main__":
@@ -171,7 +171,7 @@ if __name__ == "__main__":
171
  show_label=True),
172
  gr.File(label="Input Data", show_label=True)],
173
  outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
174
- # gr.Image(label="Input Image", show_label=True),
175
  # gr.Image(label="Activation 1", show_label=True),
176
  # gr.Image(label="Actication 2", show_label=True)],
177
  gr.Plot(label="Activations", show_label=True)
 
126
  plt.rcParams['xtick.labelsize'] = ticks
127
  plt.rcParams['ytick.labelsize'] = ticks
128
 
129
+ fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
130
 
131
+ ax1, ax2 = axs[0], axs[1]
132
 
133
+ # im0 = ax0.imshow(input_image, cmap=cmap,
134
+ # origin=origin)
135
  im1 = ax1.imshow(activation_1, cmap=cmap,
136
  origin=origin)
137
  im2 = ax2.imshow(activation_2, cmap=cmap,
138
  origin=origin)
139
 
140
+ ims = [im1, im2]
141
 
142
  for (i, ax) in enumerate(axs):
143
  divider = make_axes_locatable(ax)
144
  cax = divider.append_axes('right', size='5%', pad=0.05)
145
  fig.colorbar(ims[i], cax=cax, orientation='vertical')
146
 
147
+ # ax0.set_title('Input', fontsize=titles)
148
  ax1.set_title('Activation 1', fontsize=titles)
149
  ax2.set_title('Activation 2', fontsize=titles)
150
 
151
  print("Sending to Hugging Face")
152
 
153
+ return output, input_pil_image, fig
154
 
155
 
156
  if __name__ == "__main__":
 
171
  show_label=True),
172
  gr.File(label="Input Data", show_label=True)],
173
  outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
174
+ gr.Image(label="Input Image", show_label=True),
175
  # gr.Image(label="Activation 1", show_label=True),
176
  # gr.Image(label="Actication 2", show_label=True)],
177
  gr.Plot(label="Activations", show_label=True)