went back to image and figure
Browse files
app.py
CHANGED
|
@@ -126,31 +126,31 @@ def predict_and_analyze(model_name, num_channels, dim, image):
|
|
| 126 |
plt.rcParams['xtick.labelsize'] = ticks
|
| 127 |
plt.rcParams['ytick.labelsize'] = ticks
|
| 128 |
|
| 129 |
-
fig, axs = plt.subplots(nrows=
|
| 130 |
|
| 131 |
-
|
| 132 |
|
| 133 |
-
im0 = ax0.imshow(input_image, cmap=cmap,
|
| 134 |
-
|
| 135 |
im1 = ax1.imshow(activation_1, cmap=cmap,
|
| 136 |
origin=origin)
|
| 137 |
im2 = ax2.imshow(activation_2, cmap=cmap,
|
| 138 |
origin=origin)
|
| 139 |
|
| 140 |
-
ims = [
|
| 141 |
|
| 142 |
for (i, ax) in enumerate(axs):
|
| 143 |
divider = make_axes_locatable(ax)
|
| 144 |
cax = divider.append_axes('right', size='5%', pad=0.05)
|
| 145 |
fig.colorbar(ims[i], cax=cax, orientation='vertical')
|
| 146 |
|
| 147 |
-
ax0.set_title('Input', fontsize=titles)
|
| 148 |
ax1.set_title('Activation 1', fontsize=titles)
|
| 149 |
ax2.set_title('Activation 2', fontsize=titles)
|
| 150 |
|
| 151 |
print("Sending to Hugging Face")
|
| 152 |
|
| 153 |
-
return output, fig
|
| 154 |
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
|
@@ -171,7 +171,7 @@ if __name__ == "__main__":
|
|
| 171 |
show_label=True),
|
| 172 |
gr.File(label="Input Data", show_label=True)],
|
| 173 |
outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
|
| 174 |
-
|
| 175 |
# gr.Image(label="Activation 1", show_label=True),
|
| 176 |
# gr.Image(label="Actication 2", show_label=True)],
|
| 177 |
gr.Plot(label="Activations", show_label=True)
|
|
|
|
| 126 |
plt.rcParams['xtick.labelsize'] = ticks
|
| 127 |
plt.rcParams['ytick.labelsize'] = ticks
|
| 128 |
|
| 129 |
+
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
|
| 130 |
|
| 131 |
+
ax1, ax2 = axs[0], axs[1]
|
| 132 |
|
| 133 |
+
# im0 = ax0.imshow(input_image, cmap=cmap,
|
| 134 |
+
# origin=origin)
|
| 135 |
im1 = ax1.imshow(activation_1, cmap=cmap,
|
| 136 |
origin=origin)
|
| 137 |
im2 = ax2.imshow(activation_2, cmap=cmap,
|
| 138 |
origin=origin)
|
| 139 |
|
| 140 |
+
ims = [im1, im2]
|
| 141 |
|
| 142 |
for (i, ax) in enumerate(axs):
|
| 143 |
divider = make_axes_locatable(ax)
|
| 144 |
cax = divider.append_axes('right', size='5%', pad=0.05)
|
| 145 |
fig.colorbar(ims[i], cax=cax, orientation='vertical')
|
| 146 |
|
| 147 |
+
# ax0.set_title('Input', fontsize=titles)
|
| 148 |
ax1.set_title('Activation 1', fontsize=titles)
|
| 149 |
ax2.set_title('Activation 2', fontsize=titles)
|
| 150 |
|
| 151 |
print("Sending to Hugging Face")
|
| 152 |
|
| 153 |
+
return output, input_pil_image, fig
|
| 154 |
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
|
|
|
| 171 |
show_label=True),
|
| 172 |
gr.File(label="Input Data", show_label=True)],
|
| 173 |
outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
|
| 174 |
+
gr.Image(label="Input Image", show_label=True),
|
| 175 |
# gr.Image(label="Activation 1", show_label=True),
|
| 176 |
# gr.Image(label="Actication 2", show_label=True)],
|
| 177 |
gr.Plot(label="Activations", show_label=True)
|