jpterry commited on
Commit
5757889
·
1 Parent(s): 98b3e34

dropout=kwarg

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. model_utils/efficientnet_config.py +3 -3
app.py CHANGED
@@ -210,7 +210,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
210
 
211
 
212
  config = EfficientNetConfig(
213
- hparams.dropout,
214
  num_channels=hparams.num_channels,
215
  num_classes=hparams.num_classes,
216
  size=hparams.size,
 
210
 
211
 
212
  config = EfficientNetConfig(
213
+ dropout=hparams.dropout,
214
  num_channels=hparams.num_channels,
215
  num_classes=hparams.num_classes,
216
  size=hparams.size,
model_utils/efficientnet_config.py CHANGED
@@ -247,7 +247,7 @@ class EfficientNetConfig(PretrainedConfig):
247
  def __init__(
248
  self,
249
  # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
250
- dropout: float,
251
  num_channels: int = 61,
252
  stochastic_depth_prob: float = 0.2,
253
  num_classes: int = 2,
@@ -272,7 +272,7 @@ class EfficientNetConfig(PretrainedConfig):
272
 
273
 
274
  self.model = EfficientNet(
275
- dropout,
276
  num_channels=num_channels,
277
  num_classes=num_classes,
278
  size=size,
@@ -409,7 +409,7 @@ class EfficientNet(nn.Module):
409
  def __init__(
410
  self,
411
  # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
412
- dropout: float,
413
  num_channels: int = 61,
414
  stochastic_depth_prob: float = 0.2,
415
  num_classes: int = 2,
 
247
  def __init__(
248
  self,
249
  # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
250
+ dropout: float=0.25,
251
  num_channels: int = 61,
252
  stochastic_depth_prob: float = 0.2,
253
  num_classes: int = 2,
 
272
 
273
 
274
  self.model = EfficientNet(
275
+ dropout=dropout,
276
  num_channels=num_channels,
277
  num_classes=num_classes,
278
  size=size,
 
409
  def __init__(
410
  self,
411
  # inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
412
+ dropout: float=0.25,
413
  num_channels: int = 61,
414
  stochastic_depth_prob: float = 0.2,
415
  num_classes: int = 2,