dropout=kwarg
Browse files- app.py +1 -1
- model_utils/efficientnet_config.py +3 -3
app.py
CHANGED
@@ -210,7 +210,7 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
210 |
|
211 |
|
212 |
config = EfficientNetConfig(
|
213 |
-
hparams.dropout,
|
214 |
num_channels=hparams.num_channels,
|
215 |
num_classes=hparams.num_classes,
|
216 |
size=hparams.size,
|
|
|
210 |
|
211 |
|
212 |
config = EfficientNetConfig(
|
213 |
+
dropout=hparams.dropout,
|
214 |
num_channels=hparams.num_channels,
|
215 |
num_classes=hparams.num_classes,
|
216 |
size=hparams.size,
|
model_utils/efficientnet_config.py
CHANGED
@@ -247,7 +247,7 @@ class EfficientNetConfig(PretrainedConfig):
|
|
247 |
def __init__(
|
248 |
self,
|
249 |
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
250 |
-
dropout: float,
|
251 |
num_channels: int = 61,
|
252 |
stochastic_depth_prob: float = 0.2,
|
253 |
num_classes: int = 2,
|
@@ -272,7 +272,7 @@ class EfficientNetConfig(PretrainedConfig):
|
|
272 |
|
273 |
|
274 |
self.model = EfficientNet(
|
275 |
-
dropout,
|
276 |
num_channels=num_channels,
|
277 |
num_classes=num_classes,
|
278 |
size=size,
|
@@ -409,7 +409,7 @@ class EfficientNet(nn.Module):
|
|
409 |
def __init__(
|
410 |
self,
|
411 |
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
412 |
-
dropout: float,
|
413 |
num_channels: int = 61,
|
414 |
stochastic_depth_prob: float = 0.2,
|
415 |
num_classes: int = 2,
|
|
|
247 |
def __init__(
|
248 |
self,
|
249 |
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
250 |
+
dropout: float=0.25,
|
251 |
num_channels: int = 61,
|
252 |
stochastic_depth_prob: float = 0.2,
|
253 |
num_classes: int = 2,
|
|
|
272 |
|
273 |
|
274 |
self.model = EfficientNet(
|
275 |
+
dropout=dropout,
|
276 |
num_channels=num_channels,
|
277 |
num_classes=num_classes,
|
278 |
size=size,
|
|
|
409 |
def __init__(
|
410 |
self,
|
411 |
# inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],
|
412 |
+
dropout: float=0.25,
|
413 |
num_channels: int = 61,
|
414 |
stochastic_depth_prob: float = 0.2,
|
415 |
num_classes: int = 2,
|