jpterry commited on
Commit
688e887
·
1 Parent(s): 6bfda96

minor updates

Browse files
Files changed (1) hide show
  1. app.py +5 -59
app.py CHANGED
@@ -1,26 +1,12 @@
 
1
  from matplotlib import cm
2
  import matplotlib.pyplot as plt
3
  from mpl_toolkits.axes_grid1 import make_axes_locatable
4
-
5
  import numpy as np
6
-
7
- # import onnx
8
  import onnxruntime as ort
9
- # from onnx import helper
10
- # from optimum.onnxruntime import ORTModel
11
-
12
- # import pandas as pd
13
  from PIL import Image
14
-
15
  from scipy import special
16
 
17
- # import torch
18
- # import torch.utils.data
19
-
20
- import gradio as gr
21
- # from transformers import pipeline
22
-
23
-
24
  # model_path = 'chlab/planet_detection_models/'
25
  model_path = './models/'
26
 
@@ -64,7 +50,6 @@ def get_activations(intermediate_model, image: list,
64
 
65
  input_name = intermediate_model.get_inputs()[0].name
66
  outputs = intermediate_model.run(None, {input_name: image})
67
- # outputs = intermediate_model(image)
68
 
69
  output_1 = outputs[1]
70
  output_2 = outputs[2]
@@ -72,19 +57,9 @@ def get_activations(intermediate_model, image: list,
72
  output = outputs[0][0]
73
  output = special.softmax(output)
74
 
75
- # origin = 'lower'
76
-
77
- # plt.rcParams['xtick.labelsize'] = ticks
78
- # plt.rcParams['ytick.labelsize'] = ticks
79
-
80
- # fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
81
-
82
- # ax1, ax2, ax3 = axs[0], axs[1], axs[2]
83
-
84
  in_image = np.sum(image[0, :, :, :], axis=0)
85
  in_image = normalize_array(in_image)
86
-
87
- # im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
88
  if layer is None:
89
  activation_1 = np.sum(output_1[0, :, :, :], axis=0)
90
  activation_2 = np.sum(output_2[0, :, :, :], axis=0)
@@ -99,22 +74,6 @@ def get_activations(intermediate_model, image: list,
99
  activation_2 -= np.mean(activation_2)
100
  activation_2 = np.abs(activation_2)
101
 
102
-
103
- # im2 = ax2.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1,
104
- # origin=origin)
105
- # im3 = ax3.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1,
106
- # origin=origin)
107
- # ims = [im1, im2, im3]
108
-
109
- # for (i, ax) in enumerate(axs):
110
- # divider = make_axes_locatable(ax)
111
- # cax = divider.append_axes('right', size='5%', pad=0.05)
112
- # fig.colorbar(ims[i], cax=cax, orientation='vertical')
113
-
114
- # ax1.set_title('Input', fontsize=titles)
115
-
116
- # plt.show()
117
-
118
  return output, in_image, activation_1, activation_2
119
 
120
 
@@ -128,22 +87,10 @@ def predict_and_analyze(model_name, num_channels, dim, image):
128
 
129
  num_channels = int(num_channels)
130
  W = int(dim)
131
-
132
- # image = image.read()
133
-
134
- # with open(image, 'rb') as f:
135
- # im = f.readlines()
136
- # image = np.frombuffer(image)
137
-
138
  print("Loading data")
139
  image = np.load(image.name, allow_pickle=True)
140
 
141
- # image = image.reshape((num_channels, W, W))
142
-
143
- # W = int(np.sqrt(image.shape[1]))
144
-
145
- # image = image.reshape((num_channels, W, W))
146
-
147
  if len(image.shape) != 4:
148
  image = image[np.newaxis, :, :, :]
149
 
@@ -182,9 +129,9 @@ def predict_and_analyze(model_name, num_channels, dim, image):
182
 
183
  ax1, ax2 = axs[0], axs[1]
184
 
185
- im1 = ax1.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1,
186
  origin=origin)
187
- im2 = ax2.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1,
188
  origin=origin)
189
 
190
  ims = [im1, im2]
@@ -224,7 +171,6 @@ if __name__ == "__main__":
224
  # gr.Image(label="Activation 1", show_label=True),
225
  # gr.Image(label="Actication 2", show_label=True)],
226
  gr.Plot(label="Activations", show_label=True)
227
- # gr.Plot(label="Actication 2", show_label=True)],
228
  ],
229
  title="Kinematic Planet Detector"
230
  )
 
1
+ import gradio as gr
2
  from matplotlib import cm
3
  import matplotlib.pyplot as plt
4
  from mpl_toolkits.axes_grid1 import make_axes_locatable
 
5
  import numpy as np
 
 
6
  import onnxruntime as ort
 
 
 
 
7
  from PIL import Image
 
8
  from scipy import special
9
 
 
 
 
 
 
 
 
10
  # model_path = 'chlab/planet_detection_models/'
11
  model_path = './models/'
12
 
 
50
 
51
  input_name = intermediate_model.get_inputs()[0].name
52
  outputs = intermediate_model.run(None, {input_name: image})
 
53
 
54
  output_1 = outputs[1]
55
  output_2 = outputs[2]
 
57
  output = outputs[0][0]
58
  output = special.softmax(output)
59
 
 
 
 
 
 
 
 
 
 
60
  in_image = np.sum(image[0, :, :, :], axis=0)
61
  in_image = normalize_array(in_image)
62
+
 
63
  if layer is None:
64
  activation_1 = np.sum(output_1[0, :, :, :], axis=0)
65
  activation_2 = np.sum(output_2[0, :, :, :], axis=0)
 
74
  activation_2 -= np.mean(activation_2)
75
  activation_2 = np.abs(activation_2)
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  return output, in_image, activation_1, activation_2
78
 
79
 
 
87
 
88
  num_channels = int(num_channels)
89
  W = int(dim)
90
+
 
 
 
 
 
 
91
  print("Loading data")
92
  image = np.load(image.name, allow_pickle=True)
93
 
 
 
 
 
 
 
94
  if len(image.shape) != 4:
95
  image = image[np.newaxis, :, :, :]
96
 
 
129
 
130
  ax1, ax2 = axs[0], axs[1]
131
 
132
+ im1 = ax1.imshow(activation_1, cmap=cmap,
133
  origin=origin)
134
+ im2 = ax2.imshow(activation_2, cmap=cmap,
135
  origin=origin)
136
 
137
  ims = [im1, im2]
 
171
  # gr.Image(label="Activation 1", show_label=True),
172
  # gr.Image(label="Actication 2", show_label=True)],
173
  gr.Plot(label="Activations", show_label=True)
 
174
  ],
175
  title="Kinematic Planet Detector"
176
  )