minor updates
Browse files
app.py
CHANGED
|
@@ -1,26 +1,12 @@
|
|
|
|
|
| 1 |
from matplotlib import cm
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
| 4 |
-
|
| 5 |
import numpy as np
|
| 6 |
-
|
| 7 |
-
# import onnx
|
| 8 |
import onnxruntime as ort
|
| 9 |
-
# from onnx import helper
|
| 10 |
-
# from optimum.onnxruntime import ORTModel
|
| 11 |
-
|
| 12 |
-
# import pandas as pd
|
| 13 |
from PIL import Image
|
| 14 |
-
|
| 15 |
from scipy import special
|
| 16 |
|
| 17 |
-
# import torch
|
| 18 |
-
# import torch.utils.data
|
| 19 |
-
|
| 20 |
-
import gradio as gr
|
| 21 |
-
# from transformers import pipeline
|
| 22 |
-
|
| 23 |
-
|
| 24 |
# model_path = 'chlab/planet_detection_models/'
|
| 25 |
model_path = './models/'
|
| 26 |
|
|
@@ -64,7 +50,6 @@ def get_activations(intermediate_model, image: list,
|
|
| 64 |
|
| 65 |
input_name = intermediate_model.get_inputs()[0].name
|
| 66 |
outputs = intermediate_model.run(None, {input_name: image})
|
| 67 |
-
# outputs = intermediate_model(image)
|
| 68 |
|
| 69 |
output_1 = outputs[1]
|
| 70 |
output_2 = outputs[2]
|
|
@@ -72,19 +57,9 @@ def get_activations(intermediate_model, image: list,
|
|
| 72 |
output = outputs[0][0]
|
| 73 |
output = special.softmax(output)
|
| 74 |
|
| 75 |
-
# origin = 'lower'
|
| 76 |
-
|
| 77 |
-
# plt.rcParams['xtick.labelsize'] = ticks
|
| 78 |
-
# plt.rcParams['ytick.labelsize'] = ticks
|
| 79 |
-
|
| 80 |
-
# fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
|
| 81 |
-
|
| 82 |
-
# ax1, ax2, ax3 = axs[0], axs[1], axs[2]
|
| 83 |
-
|
| 84 |
in_image = np.sum(image[0, :, :, :], axis=0)
|
| 85 |
in_image = normalize_array(in_image)
|
| 86 |
-
|
| 87 |
-
# im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
|
| 88 |
if layer is None:
|
| 89 |
activation_1 = np.sum(output_1[0, :, :, :], axis=0)
|
| 90 |
activation_2 = np.sum(output_2[0, :, :, :], axis=0)
|
|
@@ -99,22 +74,6 @@ def get_activations(intermediate_model, image: list,
|
|
| 99 |
activation_2 -= np.mean(activation_2)
|
| 100 |
activation_2 = np.abs(activation_2)
|
| 101 |
|
| 102 |
-
|
| 103 |
-
# im2 = ax2.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1,
|
| 104 |
-
# origin=origin)
|
| 105 |
-
# im3 = ax3.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1,
|
| 106 |
-
# origin=origin)
|
| 107 |
-
# ims = [im1, im2, im3]
|
| 108 |
-
|
| 109 |
-
# for (i, ax) in enumerate(axs):
|
| 110 |
-
# divider = make_axes_locatable(ax)
|
| 111 |
-
# cax = divider.append_axes('right', size='5%', pad=0.05)
|
| 112 |
-
# fig.colorbar(ims[i], cax=cax, orientation='vertical')
|
| 113 |
-
|
| 114 |
-
# ax1.set_title('Input', fontsize=titles)
|
| 115 |
-
|
| 116 |
-
# plt.show()
|
| 117 |
-
|
| 118 |
return output, in_image, activation_1, activation_2
|
| 119 |
|
| 120 |
|
|
@@ -128,22 +87,10 @@ def predict_and_analyze(model_name, num_channels, dim, image):
|
|
| 128 |
|
| 129 |
num_channels = int(num_channels)
|
| 130 |
W = int(dim)
|
| 131 |
-
|
| 132 |
-
# image = image.read()
|
| 133 |
-
|
| 134 |
-
# with open(image, 'rb') as f:
|
| 135 |
-
# im = f.readlines()
|
| 136 |
-
# image = np.frombuffer(image)
|
| 137 |
-
|
| 138 |
print("Loading data")
|
| 139 |
image = np.load(image.name, allow_pickle=True)
|
| 140 |
|
| 141 |
-
# image = image.reshape((num_channels, W, W))
|
| 142 |
-
|
| 143 |
-
# W = int(np.sqrt(image.shape[1]))
|
| 144 |
-
|
| 145 |
-
# image = image.reshape((num_channels, W, W))
|
| 146 |
-
|
| 147 |
if len(image.shape) != 4:
|
| 148 |
image = image[np.newaxis, :, :, :]
|
| 149 |
|
|
@@ -182,9 +129,9 @@ def predict_and_analyze(model_name, num_channels, dim, image):
|
|
| 182 |
|
| 183 |
ax1, ax2 = axs[0], axs[1]
|
| 184 |
|
| 185 |
-
im1 = ax1.imshow(activation_1, cmap=cmap,
|
| 186 |
origin=origin)
|
| 187 |
-
im2 = ax2.imshow(activation_2, cmap=cmap,
|
| 188 |
origin=origin)
|
| 189 |
|
| 190 |
ims = [im1, im2]
|
|
@@ -224,7 +171,6 @@ if __name__ == "__main__":
|
|
| 224 |
# gr.Image(label="Activation 1", show_label=True),
|
| 225 |
# gr.Image(label="Actication 2", show_label=True)],
|
| 226 |
gr.Plot(label="Activations", show_label=True)
|
| 227 |
-
# gr.Plot(label="Actication 2", show_label=True)],
|
| 228 |
],
|
| 229 |
title="Kinematic Planet Detector"
|
| 230 |
)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
from matplotlib import cm
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
|
|
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
| 6 |
import onnxruntime as ort
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
from scipy import special
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# model_path = 'chlab/planet_detection_models/'
|
| 11 |
model_path = './models/'
|
| 12 |
|
|
|
|
| 50 |
|
| 51 |
input_name = intermediate_model.get_inputs()[0].name
|
| 52 |
outputs = intermediate_model.run(None, {input_name: image})
|
|
|
|
| 53 |
|
| 54 |
output_1 = outputs[1]
|
| 55 |
output_2 = outputs[2]
|
|
|
|
| 57 |
output = outputs[0][0]
|
| 58 |
output = special.softmax(output)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
in_image = np.sum(image[0, :, :, :], axis=0)
|
| 61 |
in_image = normalize_array(in_image)
|
| 62 |
+
|
|
|
|
| 63 |
if layer is None:
|
| 64 |
activation_1 = np.sum(output_1[0, :, :, :], axis=0)
|
| 65 |
activation_2 = np.sum(output_2[0, :, :, :], axis=0)
|
|
|
|
| 74 |
activation_2 -= np.mean(activation_2)
|
| 75 |
activation_2 = np.abs(activation_2)
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
return output, in_image, activation_1, activation_2
|
| 78 |
|
| 79 |
|
|
|
|
| 87 |
|
| 88 |
num_channels = int(num_channels)
|
| 89 |
W = int(dim)
|
| 90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
print("Loading data")
|
| 92 |
image = np.load(image.name, allow_pickle=True)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
if len(image.shape) != 4:
|
| 95 |
image = image[np.newaxis, :, :, :]
|
| 96 |
|
|
|
|
| 129 |
|
| 130 |
ax1, ax2 = axs[0], axs[1]
|
| 131 |
|
| 132 |
+
im1 = ax1.imshow(activation_1, cmap=cmap,
|
| 133 |
origin=origin)
|
| 134 |
+
im2 = ax2.imshow(activation_2, cmap=cmap,
|
| 135 |
origin=origin)
|
| 136 |
|
| 137 |
ims = [im1, im2]
|
|
|
|
| 171 |
# gr.Image(label="Activation 1", show_label=True),
|
| 172 |
# gr.Image(label="Actication 2", show_label=True)],
|
| 173 |
gr.Plot(label="Activations", show_label=True)
|
|
|
|
| 174 |
],
|
| 175 |
title="Kinematic Planet Detector"
|
| 176 |
)
|