jpterry commited on
Commit
c6f97f0
·
1 Parent(s): 646411c

progress print statements

Browse files
Files changed (1) hide show
  1. app.py +3 -19
app.py CHANGED
@@ -121,22 +121,7 @@ def predict_and_analyze(model_name, num_channels, dim, image):
121
 
122
  '''Loads a model with activations, passes through image and shows activations
123
 
124
- The image must be a pandas dataframe that can be made from a (C, W, H) numpy array
125
- using
126
-
127
- m,n,r = X.shape
128
- X = np.column_stack((np.repeat(np.arange(C), W),
129
- X.reshape(C * W, -1)))
130
- df = pd.DataFrame(X)
131
-
132
- then get the image back with
133
-
134
- X = df.values
135
- X = X[:, 1:]
136
- X = X.reshape((C, W, W))
137
-
138
- image = 2d numpy array in shape (C, W*W)
139
- i.e. take a C,W,W array and reshape into (C, W*W)
140
 
141
  '''
142
 
@@ -165,14 +150,13 @@ def predict_and_analyze(model_name, num_channels, dim, image):
165
 
166
  model_name += '_%i' % (num_channels)
167
 
168
-
169
  print("Loading model")
170
  model = load_model(model_name, activation=True)
 
171
 
172
  print("Looking at activations")
173
  output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
174
-
175
- print(output)
176
 
177
  if output[0] < output[1]:
178
  output = 'Planet predicted with %f percent confidence' % (100*output[1])
 
121
 
122
  '''Loads a model with activations, passes through image and shows activations
123
 
124
+ The image must be a numpy array of shape (C, W, W) or (1, C, W, W)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  '''
127
 
 
150
 
151
  model_name += '_%i' % (num_channels)
152
 
 
153
  print("Loading model")
154
  model = load_model(model_name, activation=True)
155
+ print("Model loaded")
156
 
157
  print("Looking at activations")
158
  output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
159
+ print("Activations and predictions finished")
 
160
 
161
  if output[0] < output[1]:
162
  output = 'Planet predicted with %f percent confidence' % (100*output[1])