making model first
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ import torch
|
|
17 |
sys.path.insert(1, "../")
|
18 |
# from utils import model_utils, train_utils, data_utils, run_utils
|
19 |
# from model_utils import jason_regnet_maker, jason_efficientnet_maker
|
20 |
-
from model_utils.efficientnet_config import EfficientNetConfig, EfficientNetPreTrained
|
21 |
|
22 |
model_path = 'chlab/'
|
23 |
# model_path = './models/'
|
@@ -223,13 +223,22 @@ def predict_and_analyze(model_name, num_channels, dim, input_channel, image):
|
|
223 |
)
|
224 |
EfficientNetConfig.model_type = "efficientnet_%s_planet_detection" % (hparams.num_channels)
|
225 |
|
226 |
-
config.save_pretrained(save_directory=model_loading_name)
|
227 |
# config = EfficientNetConfig.from_pretrained(model_loading_name)
|
228 |
|
229 |
# model = EfficientNetPreTrained.from_pretrained(model_loading_name)
|
230 |
# model = AutoModel.from_pretrained(model_loading_name, trust_remote_code=True)
|
231 |
|
232 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
print(model)
|
235 |
|
|
|
17 |
sys.path.insert(1, "../")
|
18 |
# from utils import model_utils, train_utils, data_utils, run_utils
|
19 |
# from model_utils import jason_regnet_maker, jason_efficientnet_maker
|
20 |
+
from model_utils.efficientnet_config import EfficientNetConfig, EfficientNetPreTrained, EfficientNet
|
21 |
|
22 |
model_path = 'chlab/'
|
23 |
# model_path = './models/'
|
|
|
223 |
)
|
224 |
EfficientNetConfig.model_type = "efficientnet_%s_planet_detection" % (hparams.num_channels)
|
225 |
|
226 |
+
# config.save_pretrained(save_directory=model_loading_name)
|
227 |
# config = EfficientNetConfig.from_pretrained(model_loading_name)
|
228 |
|
229 |
# model = EfficientNetPreTrained.from_pretrained(model_loading_name)
|
230 |
# model = AutoModel.from_pretrained(model_loading_name, trust_remote_code=True)
|
231 |
|
232 |
+
model = EfficientNet(dropout=hparams.dropout,
|
233 |
+
num_channels=hparams.num_channels,
|
234 |
+
num_classes=hparams.num_classes,
|
235 |
+
size=hparams.size,
|
236 |
+
stochastic_depth_prob=hparams.stochastic_depth_prob,
|
237 |
+
width_mult=hparams.width_mult,
|
238 |
+
depth_mult=hparams.depth_mult,)
|
239 |
+
|
240 |
+
model_url = cached_download(hf_hub_url(model_loading_name, filename="pytorch_model.bin"))
|
241 |
+
model.load_state_dict(torch.load(model_url, map_location='cpu'))
|
242 |
|
243 |
print(model)
|
244 |
|