Spaces:
Sleeping
Sleeping
File size: 8,253 Bytes
b23f8b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import json
import re
import sys
import numpy as np
from pathlib import Path
from typing import NamedTuple
import pandas as pd
TITLE_NORMALIZE = [
"alpha", "beta", "gamma", "delta", "epsilon", "kappa", "lambda"
]
class Context(NamedTuple):
left: str
right: str
split_right_pattern = re.compile(r"(?:#+)|(?:\[(?>[^A-Za-z0-9\[\]\.]{0,4}\d{1,3}[^A-Za-z0-9\[\]\.]{0,4})+?\])")
split_left_pattern = re.compile(r"(?:#+)|(?:\](?>[^A-Za-z0-9\[\]\.]{0,4}\d{1,3}[^A-Za-z0-9\[\]\.]{0,4})+?\[)")
ieee_style_pattern = re.compile(r"(?>\[(?>[^A-Za-z0-9\[\]\.]*(\d{1,3})[^A-Za-z0-9\[\]\.]*)+\][^A-Za-z0-9\[\]]*)+")
auth_year_style_pattern = re.compile(r"(?>\((?>[^()]+?[,\s][1-2][0-9]{3})+\)[^()A-Za-z0-9]*)+")
def filter_page_breaks(content):
find_page_breaks = re.compile(
r"""
\n*
\n # empty line
-----\n # 5 dashes
\n # empty line
(?:.*?\n)? # Capture the footer/header
\n*
""",
re.VERBOSE | re.M
)
return re.sub(find_page_breaks, " ", content)
def get_author_title_year_patterns_from_citation(cite):
title = cite['title']
for w in TITLE_NORMALIZE:
title = title.replace(w, "$")
title = re.sub(r"[^a-zA-Z0-9]+", "_", title) # Replace en and em dashes with a hyphen
# title = title.replace(" ", r"[^a-zA-Z0-9]+?")
year = str(cite['publication_year'])
try:
first_author = cite['authorships'][0]['author']['display_name']
## only lastname
first_author = re.sub(r"[^a-zA-Z0-9]+", "_", first_author.split(" ")[-1])
except IndexError or TypeError:
first_author = None
return first_author, title, year
def extract_potential_citations(paper):
ieee_style = ieee_style_pattern.finditer(paper)
ieee_style_buckets = []
for match in ieee_style:
possible = set([int(n) for n in re.findall(r"\d{1,3}", match.group(1))])
## expand ranges
ranges = re.findall(r"(\d{1,3})[βββ-]+(\d{1,3})", match.group(1))
if len(ranges)>0:
for start, end in ranges:
possible |= set(range(int(start),int(end)+1))
ieee_style_buckets.append((match.start(), match.end(), match.group(0), possible))
auth_year_style = auth_year_style_pattern.finditer(paper)
auth_year_style_buckets = []
for match in auth_year_style:
possible = set(re.split(r"(\b[1-2]\d{3}\b)\W*", match.group(0)))
auth_year_style_buckets.append((match.start(), match.end(), match.group(0), possible))
return ieee_style_buckets, auth_year_style_buckets
def find_reference_in_reference_section(paper, cite, references):
"""
Searches for reference section entry matching citation paper title, year, first author, and journal in a markdown file
using fuzzy matching.
"""
patterns = get_author_title_year_patterns_from_citation(cite)
if any([p is None for p in patterns]):
return paper, None
author, title, year = patterns
patterns = [author, title, year]
# Try finding all the patterns between two enumeration items starting from the back of the string
# for i,s in enumerate(references):
for full_ref, enum, ref_body in references:
for w in TITLE_NORMALIZE:
normalized = ref_body.replace(w, "$")
fuzzy_ref = re.sub(r"[^a-zA-Z0-9]+", "_", normalized)
if all([re.search(pattern, fuzzy_ref, re.IGNORECASE | re.MULTILINE | re.DOTALL) for pattern in patterns]):
match = (cite["id"], author, title, year, enum, ref_body)
# remove the reference from the paper so it can't be matched again
paper = paper.replace(full_ref, "")
return paper, match
return paper, (cite["id"], author, title, year, None, None)
def find_mentions_by_pointer(doi, ref, paper, ieee_possible):
"""
Match the links mentioning that reference in the text and extract context.
"""
mentions = []
(oa_id, _, _, _, ref_num, r) = ref
for start, end, match, possible_numbers in ieee_possible:
if int(ref_num) in possible_numbers:
context = create_context(start, end, paper)
mentions.append((doi, oa_id, ref_num, r, start, end, context.left, match, context.right))
return mentions
def find_mentions_direct(doi, ref, paper, auth_style_possible):
"""
Match the links mentioning that reference in the text and extract context.
"""
mentions = []
(oa_id, a, _, y, _, _) = ref
for start, end, match, possibilities in auth_style_possible:
for possibility in possibilities:
if y in possibility and a in possibility:
context = create_context(start, end, paper)
mentions.append((doi, oa_id, None, None, start, end, context.left, match, context.right))
return mentions
def create_context(start, end, paper):
left = paper[max(0, start - 500):start]
right = paper[end:end + min(len(paper) - end, 500)]
## only take context until a next section begins or another citation appears
splitleft = split_left_pattern.search(left[::-1])
if splitleft is not None:
left = left[len(left) - splitleft.start():]
splitright = split_right_pattern.search(right)
if splitright is not None:
right = right[:splitright.start()]
return Context(left=left, right=right)
def restore_inverted_abstract(inverted_abstr):
all_indexes = [index for indexes in inverted_abstr.values() for index in indexes]
if len(all_indexes) > 0:
length = max(all_indexes) + 1
else:
return None
abstract_words = ["" for _ in range(length)]
for word, indexes in inverted_abstr.items():
for index in indexes:
abstract_words[index] = word
return " ".join(abstract_words)
def extract_title_abstract(oa_object):
abstract = oa_object["abstract_inverted_index"]
title_abstract_obj = {
"title": oa_object["title"],
"abstract": (None if abstract is None else restore_inverted_abstract(abstract))
}
return title_abstract_obj
def extract_citation_contexts(cites, paper):
counter=0
extracted_citations = []
references_pattern = re.compile(r'(\n\W*(\d{1,3})\W(.+?)(?=(?:\n\n)|(?:\n\W*\d{1,3}\W)|\Z))', re.VERBOSE | re.I | re.M | re.S)
for doi in cites:
# for doi in ["10.1155/2021/4883509"]:
counter+=1
paper = filter_page_breaks(paper)
# print(paper)
if paper is None:
continue
# remove title and authors from beginning of paper
paper = paper[750:]
citations = cites[doi]
# references = re.findall(r'\n\s*(\d+)\.(.*?)(?=(?:\n\s*\d+\.)|\Z)', paper, re.VERBOSE | re.I | re.M | re.S)
references = references_pattern.findall(paper)
found = 0
n_mentions = 0
has_abstract_title = 0
in_ref_section_refs = []
for cite in citations:
embedding_input = extract_title_abstract(cite)
if embedding_input["abstract"] is None or embedding_input["title"] is None:
in_ref_section_refs.append(None)
continue
has_abstract_title+=1
paper, in_ref_section_ref = find_reference_in_reference_section(paper, cite, references)
in_ref_section_refs.append(in_ref_section_ref)
ieee, auth_year = extract_potential_citations(paper)
for ref in in_ref_section_refs:
if ref is not None:
if ref[4] is not None:
mentions = find_mentions_by_pointer(doi, ref, paper, ieee)
else: mentions = []
mentions += find_mentions_direct(doi, ref, paper, auth_year)
extracted_citations+=mentions
if len(mentions)>0:
n_mentions+=len(mentions)
found+=1
print(f"{counter}/{len(cites)} - {doi}: {len(citations)} citations, {has_abstract_title} embeddable citations and {found} references with {n_mentions} mentions found in markdown.")
return pd.DataFrame(extracted_citations, columns = ["cited_in_doi", "citation_id", "reference_marker", "reference_target", "mention_start", "mention_end", "left_context", "mention", "right_context"])
|