Christopher Román Jaimes
commited on
Commit
·
1ef8976
1
Parent(s):
518184e
fix: add cleaning post inference.
Browse files
app.py
CHANGED
@@ -1,14 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from gliner import GLiNER
|
3 |
|
|
|
4 |
model = GLiNER.from_pretrained("chris32/gliner_multi_pii_real_state-v2")
|
5 |
model.eval()
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def generate_answer(text):
|
14 |
labels = [
|
@@ -24,10 +235,23 @@ def generate_answer(text):
|
|
24 |
'NOMBRE_CONDOMINIO',
|
25 |
'AÑO_REMODELACIÓN'
|
26 |
]
|
|
|
27 |
entities = model.predict_entities(text, labels, threshold=0.4)
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Cambiar a entrada de texto
|
33 |
#text_input = gr.inputs.Textbox(lines=15, label="Input Text")
|
|
|
1 |
+
# Datetime
|
2 |
+
import datetime
|
3 |
+
# Manipulate
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
# App
|
10 |
import gradio as gr
|
11 |
+
# GLiNER Model
|
12 |
from gliner import GLiNER
|
13 |
|
14 |
+
# Load Model
|
15 |
model = GLiNER.from_pretrained("chris32/gliner_multi_pii_real_state-v2")
|
16 |
model.eval()
|
17 |
|
18 |
+
# Global Variables: For Post Cleaning Inferences
|
19 |
+
YEAR_OF_REMODELING_LIMIT = 100
|
20 |
+
CURRENT_YEAR = int(datetime.date.today().year)
|
21 |
+
SCORE_LIMIT_SIMILARITY_NAMES = 70
|
22 |
+
|
23 |
+
def format_gliner_predictions(prediction):
|
24 |
+
if len(prediction) > 0:
|
25 |
+
# Select the Entity value with the Greater Score for each Entity Name
|
26 |
+
prediction_df = pd.DataFrame(prediction)\
|
27 |
+
.sort_values("score", ascending = False)\
|
28 |
+
.drop_duplicates(subset = "label", keep = "first")
|
29 |
+
|
30 |
+
# Add Columns Label for Text and Probability
|
31 |
+
prediction_df["label_text"] = prediction_df["label"].apply(lambda x: f"pred_{x}")
|
32 |
+
prediction_df["label_prob"] = prediction_df["label"].apply(lambda x: f"prob_{x}")
|
33 |
+
|
34 |
+
# Format Predictions
|
35 |
+
entities = prediction_df.set_index("label_text")["text"].to_dict()
|
36 |
+
entities_probs = prediction_df.set_index("label_prob")["score"].to_dict()
|
37 |
+
predictions_formatted = {**entities, **entities_probs}
|
38 |
+
|
39 |
+
return predictions_formatted
|
40 |
+
else:
|
41 |
+
return dict()
|
42 |
+
|
43 |
+
def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict):
|
44 |
+
# Prediction and Probability
|
45 |
+
prediction = row[f"pred_{feature_name}"]
|
46 |
+
prob = row[f"prob_{feature_name}"]
|
47 |
+
|
48 |
+
# Clean and Return Prediction only if the Threshold is lower.
|
49 |
+
if prob > threshols_dict[feature_name]:
|
50 |
+
clean_function = clean_functions_dict[feature_name]
|
51 |
+
prediction_clean = clean_function(prediction)
|
52 |
+
return prediction_clean
|
53 |
+
else:
|
54 |
+
return None
|
55 |
+
|
56 |
+
surfaces_words_to_omit = ["ha", "hect", "lts", "litros", "mil"]
|
57 |
+
tower_name_key_words_to_keep = ["torr", "towe"]
|
58 |
+
|
59 |
+
def has_number(string):
|
60 |
+
return bool(re.search(r'\d', string))
|
61 |
+
|
62 |
+
def contains_multiplication(string):
|
63 |
+
# Regular expression pattern to match a multiplication operation
|
64 |
+
pattern = r'\b([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*[xX]\s*([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*\b'
|
65 |
+
|
66 |
+
# Search for the pattern in the string
|
67 |
+
match = re.search(pattern, string)
|
68 |
+
|
69 |
+
# If a match is found, return True, otherwise False
|
70 |
+
if match:
|
71 |
+
return True
|
72 |
+
else:
|
73 |
+
return False
|
74 |
+
|
75 |
+
def extract_first_number_from_string(text):
|
76 |
+
if isinstance(text, str):
|
77 |
+
match = re.search(r'\b\d*\.?\d+\b|\d*\.?\d+', text)
|
78 |
+
if match:
|
79 |
+
start_pos = match.start()
|
80 |
+
end_pos = match.end()
|
81 |
+
number = int(float(match.group()))
|
82 |
+
return number, start_pos, end_pos
|
83 |
+
else:
|
84 |
+
return None, None, None
|
85 |
+
else:
|
86 |
+
return None, None, None
|
87 |
+
|
88 |
+
def get_character(string, index):
|
89 |
+
if len(string) > index:
|
90 |
+
return string[index]
|
91 |
+
else:
|
92 |
+
return None
|
93 |
+
|
94 |
+
def find_valid_comma_separated_number(string):
|
95 |
+
# This regular expression matches strings starting with 1 to 3 digits followed by a comma and 3 digits. It ensures no other digits or commas follow or the string ends.
|
96 |
+
match = re.match(r'^(\d{1,3},\d{3})(?:[^0-9,]|$)', string)
|
97 |
+
if match:
|
98 |
+
valid_number = int(match.group(1).replace(",", ""))
|
99 |
+
return valid_number
|
100 |
+
else:
|
101 |
+
return None
|
102 |
+
|
103 |
+
def extract_surface_from_string(string: str) -> int:
|
104 |
+
if isinstance(string, str):
|
105 |
+
# 1. Validate if it Contains a Number
|
106 |
+
if not(has_number(string)): return None
|
107 |
+
|
108 |
+
# 2. Validate if it No Contains Multiplication
|
109 |
+
if contains_multiplication(string): return None
|
110 |
+
|
111 |
+
# 3. Validate if it No Contains Words to Omit
|
112 |
+
if any([word in string.lower() for word in surfaces_words_to_omit]): return None
|
113 |
+
|
114 |
+
# 4. Extract First Number
|
115 |
+
number, start_pos, end_pos = extract_first_number_from_string(string)
|
116 |
+
|
117 |
+
# 5. Extract Valid Comma Separated Number
|
118 |
+
if isinstance(number, int):
|
119 |
+
if get_character(string, end_pos) == ",":
|
120 |
+
valid_comma_separated_number = find_valid_comma_separated_number(string[start_pos: -1])
|
121 |
+
return valid_comma_separated_number
|
122 |
+
else:
|
123 |
+
return number
|
124 |
+
else:
|
125 |
+
return None
|
126 |
+
else:
|
127 |
+
return None
|
128 |
+
|
129 |
+
def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict):
|
130 |
+
# Prediction and Probability
|
131 |
+
prediction = row[f"pred_{feature_name}"]
|
132 |
+
prob = row[f"prob_{feature_name}"]
|
133 |
+
|
134 |
+
# Clean and Return Prediction only if the Threshold is lower.
|
135 |
+
if prob > threshols_dict[feature_name]:
|
136 |
+
clean_function = clean_functions_dict[feature_name]
|
137 |
+
prediction_clean = clean_function(prediction)
|
138 |
+
return prediction_clean
|
139 |
+
else:
|
140 |
+
return None
|
141 |
+
|
142 |
+
def calculate_metrics(X, feature_name, data_type):
|
143 |
+
true_positives = 0
|
144 |
+
true_negatives = 0
|
145 |
+
false_positives = 0
|
146 |
+
false_negatives = 0
|
147 |
+
for pred, true in zip(X[f"clean_pred_{feature_name}"], X[f"clean_{feature_name}"]):
|
148 |
+
if isinstance(pred, data_type):
|
149 |
+
if isinstance(true, data_type):
|
150 |
+
if pred == true:
|
151 |
+
true_positives += 1
|
152 |
+
else:
|
153 |
+
false_positives += 1
|
154 |
+
else:
|
155 |
+
false_positives += 1
|
156 |
+
else:
|
157 |
+
if isinstance(true, data_type):
|
158 |
+
false_negatives += 1
|
159 |
+
else:
|
160 |
+
true_negatives += 1
|
161 |
+
|
162 |
+
# Calculate Metrics
|
163 |
+
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) != 0 else np.nan
|
164 |
+
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) != 0 else np.nan
|
165 |
+
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else np.nan
|
166 |
+
metrics = {
|
167 |
+
"precision": precision,
|
168 |
+
"recall": recall,
|
169 |
+
"f1_score": f1_score,
|
170 |
+
}
|
171 |
+
|
172 |
+
return metrics
|
173 |
+
|
174 |
+
def extract_remodeling_year_from_string(string):
|
175 |
+
if isinstance(string, str):
|
176 |
+
# 1. Detect 4-digit year
|
177 |
+
match = re.search(r'\b\d{4}\b', string)
|
178 |
+
if match:
|
179 |
+
year_predicted = int(match.group())
|
180 |
+
else:
|
181 |
+
# 2. Detect quantity of years followed by "year", "years", "anio", "año", or "an"
|
182 |
+
match = re.search(r'(\d+) (year|years|anio|año|an|añ)', string.lower(), re.IGNORECASE)
|
183 |
+
if match:
|
184 |
+
past_years_predicted = int(match.group(1))
|
185 |
+
year_predicted = CURRENT_YEAR - past_years_predicted
|
186 |
+
else:
|
187 |
+
return None
|
188 |
+
|
189 |
+
# 3. Detect if it is a valid year
|
190 |
+
is_valid_year = (year_predicted <= CURRENT_YEAR) and (YEAR_OF_REMODELING_LIMIT > CURRENT_YEAR - year_predicted)
|
191 |
+
return year_predicted if is_valid_year else None
|
192 |
+
|
193 |
+
return None
|
194 |
+
|
195 |
+
# Cleaning
|
196 |
+
clean_functions_dict = {
|
197 |
+
"SUPERFICIE_TERRAZA": extract_surface_from_string,
|
198 |
+
"SUPERFICIE_JARDIN": extract_surface_from_string,
|
199 |
+
"SUPERFICIE_TERRENO": extract_surface_from_string,
|
200 |
+
"SUPERFICIE_HABITABLE": extract_surface_from_string,
|
201 |
+
"SUPERFICIE_BALCON": extract_surface_from_string,
|
202 |
+
"AÑO_REMODELACIÓN": extract_remodeling_year_from_string,
|
203 |
+
"NOMBRE_COMPLETO_ARQUITECTO": lambda x: x,
|
204 |
+
'NOMBRE_CLUB_GOLF': lambda x: x,
|
205 |
+
'NOMBRE_TORRE': lambda x: x,
|
206 |
+
'NOMBRE_CONDOMINIO': lambda x: x,
|
207 |
+
'NOMBRE_DESARROLLO': lambda x: x,
|
208 |
+
}
|
209 |
+
|
210 |
+
threshols_dict = {
|
211 |
+
"SUPERFICIE_TERRAZA": 0.9,
|
212 |
+
"SUPERFICIE_JARDIN": 0.9,
|
213 |
+
"SUPERFICIE_TERRENO": 0.9,
|
214 |
+
"SUPERFICIE_HABITABLE": 0.9,
|
215 |
+
"SUPERFICIE_BALCON": 0.9,
|
216 |
+
"AÑO_REMODELACIÓN": 0.9,
|
217 |
+
"NOMBRE_COMPLETO_ARQUITECTO": 0.9,
|
218 |
+
'NOMBRE_CLUB_GOLF': 0.9,
|
219 |
+
'NOMBRE_TORRE': 0.9,
|
220 |
+
'NOMBRE_CONDOMINIO': 0.9,
|
221 |
+
'NOMBRE_DESARROLLO': 0.9,
|
222 |
+
}
|
223 |
|
224 |
def generate_answer(text):
|
225 |
labels = [
|
|
|
235 |
'NOMBRE_CONDOMINIO',
|
236 |
'AÑO_REMODELACIÓN'
|
237 |
]
|
238 |
+
# Inference
|
239 |
entities = model.predict_entities(text, labels, threshold=0.4)
|
240 |
+
|
241 |
+
# Format Prediction Entities
|
242 |
+
entities_formatted = format_gliner_predictions(entities)
|
243 |
+
|
244 |
+
# Clean Entities
|
245 |
+
entities_names = list({c.replace("pred_", "").replace("prob_", "") for c in list(entities_formatted.keys())})
|
246 |
+
entities_cleaned = dict()
|
247 |
+
for feature_name in entities_names:
|
248 |
+
entity_prediction_cleaned = clean_prediction(entities_formatted, feature_name, threshols_dict, clean_functions_dict)
|
249 |
+
if isinstance(entity_prediction_cleaned, str) or isinstance(entity_prediction_cleaned, int):
|
250 |
+
entities_cleaned[feature_name] = entity_prediction_cleaned
|
251 |
+
|
252 |
+
result_json = json.dumps(entities_cleaned, indent = 4, ensure_ascii = False)
|
253 |
+
|
254 |
+
return result_json
|
255 |
|
256 |
# Cambiar a entrada de texto
|
257 |
#text_input = gr.inputs.Textbox(lines=15, label="Input Text")
|