Christopher Román Jaimes
commited on
Commit
·
40d9906
1
Parent(s):
c52a63e
chore: add clean text.
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
# Datetime
|
2 |
import datetime
|
3 |
# Manipulate
|
4 |
-
import os
|
5 |
import re
|
6 |
import json
|
7 |
-
import numpy as np
|
8 |
import pandas as pd
|
9 |
# App
|
10 |
import gradio as gr
|
@@ -26,6 +24,31 @@ YEAR_OF_REMODELING_LIMIT = 100
|
|
26 |
CURRENT_YEAR = int(datetime.date.today().year)
|
27 |
SCORE_LIMIT_SIMILARITY_NAMES = 70
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def format_gliner_predictions(prediction):
|
30 |
if len(prediction) > 0:
|
31 |
# Select the Entity value with the Greater Score for each Entity Name
|
@@ -283,6 +306,10 @@ def generate_answer(text):
|
|
283 |
'NOMBRE_CONDOMINIO',
|
284 |
'AÑO_REMODELACIÓN'
|
285 |
]
|
|
|
|
|
|
|
|
|
286 |
# Inference
|
287 |
entities = model.predict_entities(text, labels, threshold=0.4)
|
288 |
|
|
|
1 |
# Datetime
|
2 |
import datetime
|
3 |
# Manipulate
|
|
|
4 |
import re
|
5 |
import json
|
|
|
6 |
import pandas as pd
|
7 |
# App
|
8 |
import gradio as gr
|
|
|
24 |
CURRENT_YEAR = int(datetime.date.today().year)
|
25 |
SCORE_LIMIT_SIMILARITY_NAMES = 70
|
26 |
|
27 |
+
def clean_text(text):
|
28 |
+
# Replace HTML line breaks with the specified character
|
29 |
+
replacement_char = " # "
|
30 |
+
text = re.sub(r'<br\s*\/?>', replacement_char, text)
|
31 |
+
|
32 |
+
# Remove HTML tags and special characters
|
33 |
+
cleaned_text = re.sub(r'<[^>]*>', '', text)
|
34 |
+
cleaned_text = re.sub(r' ', ' ', cleaned_text)
|
35 |
+
cleaned_text = re.sub(r'&', '&', cleaned_text)
|
36 |
+
|
37 |
+
# Drop punctuation marks
|
38 |
+
#regex = '[\\!\\"\\#\\$\\%\\&\\\'\\(\\)\\*\\+\\,\\-\\.\\/\\:\\;\\<\\=\\>\\?\\@\\[\\\\\\]\\^_\\`\\{\\|\\}\\~]'
|
39 |
+
#cleaned_text = re.sub(regex , ' ', cleaned_text)
|
40 |
+
|
41 |
+
# Replace multiple spaces with a single one
|
42 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
|
43 |
+
|
44 |
+
# Remove leading and trailing spaces
|
45 |
+
cleaned_text = cleaned_text.strip()
|
46 |
+
|
47 |
+
# Replace Duplicated "." and ","
|
48 |
+
cleaned_text = cleaned_text.replace("..", ".").replace(",,", ",")
|
49 |
+
|
50 |
+
return cleaned_text
|
51 |
+
|
52 |
def format_gliner_predictions(prediction):
|
53 |
if len(prediction) > 0:
|
54 |
# Select the Entity value with the Greater Score for each Entity Name
|
|
|
306 |
'NOMBRE_CONDOMINIO',
|
307 |
'AÑO_REMODELACIÓN'
|
308 |
]
|
309 |
+
|
310 |
+
# Clean Text
|
311 |
+
text = clean_text(text)
|
312 |
+
|
313 |
# Inference
|
314 |
entities = model.predict_entities(text, labels, threshold=0.4)
|
315 |
|