|
import os
|
|
import streamlit as st
|
|
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
from sentence_transformers import SentenceTransformer, util
|
|
from transformers import pipeline
|
|
|
|
class URLValidator:
|
|
"""
|
|
A production-ready URL validation class that evaluates the credibility of a webpage
|
|
using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
|
|
"""
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.serpapi_key = os.getenv("SerpAPI_Key")
|
|
|
|
|
|
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
|
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
|
|
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
|
def fetch_page_content(self, url: str) -> str:
|
|
""" Fetches and extracts text content from the given URL. """
|
|
try:
|
|
response = requests.get(url, timeout=10)
|
|
response.raise_for_status()
|
|
soup = BeautifulSoup(response.text, "html.parser")
|
|
return " ".join([p.text for p in soup.find_all("p")])
|
|
except requests.RequestException:
|
|
return ""
|
|
|
|
def get_domain_trust(self, url: str, content: str) -> int:
|
|
""" Computes the domain trust score based on available data sources. """
|
|
trust_scores = []
|
|
|
|
|
|
if content:
|
|
try:
|
|
trust_scores.append(self.get_domain_trust_huggingface(content))
|
|
except:
|
|
pass
|
|
|
|
|
|
return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50
|
|
|
|
def get_domain_trust_huggingface(self, content: str) -> int:
|
|
""" Uses a Hugging Face fake news detection model to assess credibility. """
|
|
if not content:
|
|
return 50
|
|
result = self.fake_news_classifier(content[:512])[0]
|
|
return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50
|
|
|
|
def compute_similarity_score(self, user_query: str, content: str) -> int:
|
|
""" Computes semantic similarity between user query and page content. """
|
|
if not content:
|
|
return 0
|
|
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
|
|
|
|
def check_facts(self, content: str) -> int:
|
|
""" Cross-checks extracted content with Google Fact Check API. """
|
|
if not content:
|
|
return 50
|
|
api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}"
|
|
try:
|
|
response = requests.get(api_url)
|
|
data = response.json()
|
|
return 80 if "claims" in data and data["claims"] else 40
|
|
except:
|
|
return 50
|
|
|
|
def check_google_scholar(self, url: str) -> int:
|
|
""" Checks Google Scholar citations using SerpAPI. """
|
|
serpapi_key = self.serpapi_key
|
|
params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key}
|
|
try:
|
|
response = requests.get("https://serpapi.com/search", params=params)
|
|
data = response.json()
|
|
return min(len(data.get("organic_results", [])) * 10, 100)
|
|
except:
|
|
return 0
|
|
|
|
def detect_bias(self, content: str) -> int:
|
|
""" Uses NLP sentiment analysis to detect potential bias in content. """
|
|
if not content:
|
|
return 50
|
|
sentiment_result = self.sentiment_analyzer(content[:512])[0]
|
|
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
|
|
|
|
def get_star_rating(self, score: float) -> tuple:
|
|
""" Converts a score (0-100) into a 1-5 star rating. """
|
|
stars = max(1, min(5, round(score / 20)))
|
|
return stars, "⭐" * stars
|
|
|
|
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) -> str:
|
|
""" Generates a human-readable explanation for the score. """
|
|
reasons = []
|
|
if domain_trust < 50:
|
|
reasons.append("The source has low domain authority.")
|
|
if similarity_score < 50:
|
|
reasons.append("The content is not highly relevant to your query.")
|
|
if fact_check_score < 50:
|
|
reasons.append("Limited fact-checking verification found.")
|
|
if bias_score < 50:
|
|
reasons.append("Potential bias detected in the content.")
|
|
if citation_score < 30:
|
|
reasons.append("Few citations found for this content.")
|
|
|
|
return " ".join(reasons) if reasons else "This source is highly credible and relevant."
|
|
|
|
def rate_url_validity(self, user_query: str, url: str) -> dict:
|
|
""" Main function to evaluate the validity of a webpage. """
|
|
content = self.fetch_page_content(url)
|
|
|
|
domain_trust = self.get_domain_trust(url, content)
|
|
similarity_score = self.compute_similarity_score(user_query, content)
|
|
fact_check_score = self.check_facts(content)
|
|
bias_score = self.detect_bias(content)
|
|
citation_score = self.check_google_scholar(url)
|
|
|
|
final_score = (
|
|
(0.3 * domain_trust) +
|
|
(0.3 * similarity_score) +
|
|
(0.2 * fact_check_score) +
|
|
(0.1 * bias_score) +
|
|
(0.1 * citation_score)
|
|
)
|
|
|
|
stars, icon = self.get_star_rating(final_score)
|
|
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score)
|
|
|
|
return {
|
|
"raw_score": {
|
|
"Domain Trust": domain_trust,
|
|
"Content Relevance": similarity_score,
|
|
"Fact-Check Score": fact_check_score,
|
|
"Bias Score": bias_score,
|
|
"Citation Score": citation_score,
|
|
"Final Validity Score": final_score
|
|
},
|
|
"stars": {
|
|
"score": stars,
|
|
"icon": icon
|
|
},
|
|
"explanation": explanation
|
|
}
|
|
|
|
st.write("# LEVEL1 TITLE: APP")
|
|
st.write("this is my first app")
|
|
|
|
|
|
user_prompt = st.text_area("Enter your search query:", "I have just been on an international flight, can I come back home to hold my 1-month-old newborn?")
|
|
url_to_check = st.text_input("Enter the URL to validate:", "https://www.mayoclinic.org/healthy-lifestyle/infant-and-toddler-health/expert-answers/air-travel-with-infant/faq-20058539")
|
|
|
|
|
|
if st.button("Validate URL"):
|
|
if not user_prompt.strip() or not url_to_check.strip():
|
|
st.warning("Please enter both a search query and a URL.")
|
|
else:
|
|
with st.spinner("Validating URL..."):
|
|
|
|
validator = URLValidator()
|
|
result = validator.rate_url_validity(user_prompt, url_to_check)
|
|
|
|
|
|
st.subheader("Validation Results")
|
|
st.json(result) |