File size: 20,860 Bytes
26dc4f5
 
 
62ede92
26dc4f5
 
 
 
 
 
 
d55c559
 
810bbae
0015607
d55c559
810bbae
0015607
d55c559
 
 
 
 
 
 
810bbae
d55c559
26dc4f5
 
d55c559
 
26dc4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ede92
26dc4f5
 
 
d55c559
26dc4f5
 
d55c559
26dc4f5
 
 
 
 
 
 
 
146b507
 
 
 
 
 
26dc4f5
 
 
 
146b507
26dc4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
 
0570cd5
26dc4f5
0570cd5
 
26dc4f5
0570cd5
 
 
 
26dc4f5
 
 
0570cd5
26dc4f5
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
 
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
0570cd5
26dc4f5
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
0570cd5
 
 
 
 
 
 
 
 
 
26dc4f5
 
0570cd5
26dc4f5
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
0570cd5
 
 
 
 
 
26dc4f5
0570cd5
 
 
 
 
 
26dc4f5
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
 
 
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
0570cd5
26dc4f5
 
 
0570cd5
 
26dc4f5
 
 
 
 
0570cd5
 
26dc4f5
 
0570cd5
 
 
 
 
 
26dc4f5
0570cd5
26dc4f5
0570cd5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces

# Model configuration
MODEL_ID = "yasserrmd/DentaInstruct-1.2B"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize model and tokenizer
print(f"Loading model {MODEL_ID}...")

# Load tokenizer - try the fine-tuned model first, then base model
try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    print(f"Loaded tokenizer from {MODEL_ID}")
except Exception as e:
    print(f"Failed to load tokenizer from {MODEL_ID}: {e}")
    print("Using tokenizer from base LFM2 model...")
    try:
        tokenizer = AutoTokenizer.from_pretrained("LiquidAI/LFM2-1.2B")
    except Exception as e2:
        print(f"Failed to load LFM2 tokenizer: {e2}")
        print("Using fallback TinyLlama tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Load model with proper dtype for efficiency
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
    device_map="auto" if torch.cuda.is_available() else None
)

if not torch.cuda.is_available():
    model = model.to(DEVICE)

# Set padding token if not set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

def format_prompt(message, history):
    """Format the prompt for the model"""
    messages = []
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    
    # Apply chat template
    if hasattr(tokenizer, 'apply_chat_template'):
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    else:
        # Fallback formatting
        prompt = ""
        for msg in messages:
            if msg["role"] == "user":
                prompt += f"User: {msg['content']}\n"
            else:
                prompt += f"Assistant: {msg['content']}\n"
        prompt += "Assistant: "
    
    return prompt

@spaces.GPU(duration=60)
def generate_response(
    message,
    history,
    temperature=0.3,
    max_new_tokens=512,
    top_p=0.95,
    repetition_penalty=1.05,
):
    """Generate response from the model"""
    
    # Format the prompt
    prompt = format_prompt(message, history)
    
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
    
    # Move to device and filter out token_type_ids if present
    model_inputs = {}
    for k, v in inputs.items():
        if k != 'token_type_ids':  # Filter out token_type_ids
            model_inputs[k] = v.to(model.device)
    
    # Generate response
    with torch.no_grad():
        outputs = model.generate(
            **model_inputs,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    
    # Decode response
    response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    
    return response

# Categorised example questions for better showcase
EXAMPLE_CATEGORIES = {
    "Patient Education": [
        "What are the main types of dental cavities and how can I prevent them?",
        "Explain the stages of gum disease from gingivitis to periodontitis",
        "What should I expect during my first dental cleaning appointment?",
    ],
    "Treatment Procedures": [
        "Walk me through the steps of a root canal treatment",
        "What's the difference between a crown and a veneer?",
        "How does the dental implant process work from start to finish?",
    ],
    "Oral Health & Prevention": [
        "What's the proper brushing technique for optimal plaque removal?",
        "How does fluoride protect teeth and is it safe for children?",
        "What foods should I avoid to maintain healthy teeth?",
    ],
    "Paediatric Dentistry": [
        "When should a child have their first dental visit?",
        "Explain the tooth eruption timeline in children",
        "How can parents help prevent early childhood cavities?",
    ],
    "Emergency & Post-Care": [
        "What should I do if I knock out a permanent tooth?",
        "How should I care for my mouth after wisdom tooth extraction?",
        "What are signs of a dental infection that needs immediate attention?",
    ]
}

# Flatten examples for the Examples component
EXAMPLES = []
for category, questions in EXAMPLE_CATEGORIES.items():
    for question in questions:
        EXAMPLES.append([question])

# Custom CSS for improved styling with proper dark mode support
custom_css = """
/* Improved disclaimer box with proper dark mode support */
.disclaimer-box {
    background: linear-gradient(135deg, #fff9e6 0%, #fff3cd 100%);
    border: 2px solid #f0ad4e;
    border-radius: 10px;
    padding: 16px 20px;
    margin: 20px 0;
    font-size: 14px;
    line-height: 1.6;
    position: relative;
    overflow: hidden;
}

/* Dark mode disclaimer */
.dark .disclaimer-box {
    background: linear-gradient(135deg, #3d2f1f 0%, #4a3a28 100%);
    border: 2px solid #d4a574;
    color: #ffd9b3;
}

.disclaimer-box::before {
    content: '';
    position: absolute;
    left: 0;
    top: 0;
    bottom: 0;
    width: 4px;
    background: #f0ad4e;
}

.dark .disclaimer-box::before {
    background: #d4a574;
}

.disclaimer-title {
    font-weight: 600;
    color: #d58512;
    margin-bottom: 8px;
    display: flex;
    align-items: center;
    gap: 8px;
}

.dark .disclaimer-title {
    color: #ffa500;
}

.disclaimer-text {
    color: #856404;
}

.dark .disclaimer-text {
    color: #ffd9b3;
}

/* Model capabilities cards */
.capability-cards {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
    gap: 16px;
    margin: 20px 0;
}

.capability-card {
    background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
    border: 1px solid #dee2e6;
    border-radius: 8px;
    padding: 16px;
    transition: transform 0.2s, box-shadow 0.2s;
}

.dark .capability-card {
    background: linear-gradient(135deg, #2b2b2b 0%, #1f1f1f 100%);
    border: 1px solid #404040;
}

.capability-card:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}

.dark .capability-card:hover {
    box-shadow: 0 4px 12px rgba(255,255,255,0.1);
}

.capability-title {
    font-weight: 600;
    color: #495057;
    margin-bottom: 8px;
    font-size: 16px;
}

.dark .capability-title {
    color: #e9ecef;
}

.capability-description {
    color: #6c757d;
    font-size: 14px;
    line-height: 1.5;
}

.dark .capability-description {
    color: #adb5bd;
}

/* Stats badges */
.stats-container {
    display: flex;
    gap: 16px;
    flex-wrap: wrap;
    margin: 16px 0;
}

.stat-badge {
    background: linear-gradient(135deg, #e7f3ff 0%, #cfe2ff 100%);
    border: 1px solid #b6d4fe;
    border-radius: 20px;
    padding: 8px 16px;
    display: flex;
    align-items: center;
    gap: 8px;
}

.dark .stat-badge {
    background: linear-gradient(135deg, #1a3a52 0%, #0f2940 100%);
    border: 1px solid #2563eb;
}

.stat-label {
    color: #0066cc;
    font-weight: 500;
    font-size: 12px;
    text-transform: uppercase;
    letter-spacing: 0.5px;
}

.dark .stat-label {
    color: #60a5fa;
}

.stat-value {
    color: #004099;
    font-weight: 700;
    font-size: 14px;
}

.dark .stat-value {
    color: #93bbfc;
}

/* Improved button styling */
.gr-button-primary {
    background: linear-gradient(135deg, #0066cc 0%, #0052a3 100%) !important;
    border: none !important;
    color: white !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}

.gr-button-primary:hover {
    background: linear-gradient(135deg, #0052a3 0%, #003d7a 100%) !important;
    transform: translateY(-1px);
    box-shadow: 0 4px 12px rgba(0, 102, 204, 0.3);
}

/* Chat improvements */
.gr-chatbot {
    border-radius: 12px !important;
    border: 1px solid #dee2e6 !important;
}

.dark .gr-chatbot {
    border: 1px solid #404040 !important;
}

/* Example section styling */
.example-category {
    margin-bottom: 12px;
    padding: 12px;
    background: #f8f9fa;
    border-radius: 8px;
}

.dark .example-category {
    background: #1f1f1f;
}

.example-category-title {
    font-weight: 600;
    color: #495057;
    margin-bottom: 8px;
    font-size: 14px;
    text-transform: uppercase;
    letter-spacing: 0.5px;
}

.dark .example-category-title {
    color: #e9ecef;
}

/* Header styling */
.main-header {
    background: linear-gradient(135deg, #0066cc 0%, #0052a3 100%);
    color: white;
    padding: 32px;
    border-radius: 12px;
    margin-bottom: 24px;
    text-align: center;
}

.dark .main-header {
    background: linear-gradient(135deg, #1e3a8a 0%, #1e40af 100%);
}

.header-title {
    font-size: 36px;
    font-weight: 700;
    margin-bottom: 12px;
}

.header-subtitle {
    font-size: 18px;
    opacity: 0.95;
    font-weight: 400;
}

/* Mobile responsiveness */
@media (max-width: 768px) {
    .capability-cards {
        grid-template-columns: 1fr;
    }
    
    .stats-container {
        flex-direction: column;
    }
    
    .stat-badge {
        width: 100%;
        justify-content: center;
    }
    
    .header-title {
        font-size: 28px;
    }
    
    .header-subtitle {
        font-size: 16px;
    }
}
"""

# Create Gradio interface with improved design
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
    # Professional header with gradient
    gr.HTML(
        """
        <div class="main-header">
            <h1 class="header-title">🦷 DentaInstruct-1.2B Demo</h1>
            <p class="header-subtitle">Advanced AI assistant for dental education and oral health information</p>
        </div>
        """
    )
    
    # Model statistics and capabilities
    gr.HTML(
        """
        <div class="stats-container">
            <div class="stat-badge">
                <span class="stat-label">Model Size</span>
                <span class="stat-value">1.17B params</span>
            </div>
            <div class="stat-badge">
                <span class="stat-label">Base Model</span>
                <span class="stat-value">LFM2-1.2B</span>
            </div>
            <div class="stat-badge">
                <span class="stat-label">Training Data</span>
                <span class="stat-value">MIRIAD Dental</span>
            </div>
            <div class="stat-badge">
                <span class="stat-label">Response Time</span>
                <span class="stat-value">< 2 seconds</span>
            </div>
        </div>
        """
    )
    
    # Improved disclaimer with better visibility
    gr.HTML(
        """
        <div class="disclaimer-box">
            <div class="disclaimer-title">
                ⚠️ Educational Use Only - Important Medical Disclaimer
            </div>
            <div class="disclaimer-text">
                This AI model provides educational information about dental topics and is designed for learning purposes only. 
                It is <strong>NOT</strong> a substitute for professional dental or medical advice, diagnosis, or treatment. 
                Always seek the advice of your dentist or qualified healthcare provider with any questions about a medical condition or treatment.
            </div>
        </div>
        """
    )
    
    # Model capabilities showcase
    gr.HTML(
        """
        <h2 style="margin-top: 24px; margin-bottom: 16px;">What can DentaInstruct help you with?</h2>
        <div class="capability-cards">
            <div class="capability-card">
                <div class="capability-title">πŸ“š Patient Education</div>
                <div class="capability-description">Clear explanations of dental conditions, treatments, and procedures in patient-friendly language</div>
            </div>
            <div class="capability-card">
                <div class="capability-title">πŸ” Procedure Details</div>
                <div class="capability-description">Step-by-step breakdowns of common dental procedures from cleanings to complex treatments</div>
            </div>
            <div class="capability-card">
                <div class="capability-title">πŸ›‘οΈ Prevention Tips</div>
                <div class="capability-description">Evidence-based oral hygiene guidance and preventive care recommendations</div>
            </div>
            <div class="capability-card">
                <div class="capability-title">πŸ‘Ά Paediatric Dentistry</div>
                <div class="capability-description">Specialised information about children's dental development and care</div>
            </div>
            <div class="capability-card">
                <div class="capability-title">🚨 Emergency Guidance</div>
                <div class="capability-description">Educational information about dental emergencies and post-treatment care</div>
            </div>
            <div class="capability-card">
                <div class="capability-title">🦷 Anatomy & Terms</div>
                <div class="capability-description">Detailed explanations of dental anatomy and professional terminology</div>
            </div>
        </div>
        """
    )
    
    # Main chat interface
    with gr.Row():
        with gr.Column(scale=1):
            chatbot = gr.Chatbot(
                height=500,
                label="Dental Education Assistant",
                show_label=True,
                avatar_images=None,
                bubble_full_width=False,
                render_markdown=True,
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    label="Your dental question",
                    placeholder="Ask about dental procedures, oral health, treatment options, or any dental topic...",
                    lines=3,
                    scale=4,
                    container=False,
                )
                
            with gr.Row():
                submit = gr.Button("Send Question", variant="primary", scale=1)
                clear = gr.Button("Clear Chat", scale=1)
    
    # Advanced settings in a collapsible section
    with gr.Accordion("βš™οΈ Advanced Settings", open=False):
        with gr.Row():
            with gr.Column(scale=1):
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.3,
                    step=0.1,
                    label="Temperature",
                    info="Lower values (0.1-0.3) for factual responses, higher (0.7-1.0) for creative explanations"
                )
                
                max_new_tokens = gr.Slider(
                    minimum=64,
                    maximum=1024,
                    value=512,
                    step=64,
                    label="Response Length",
                    info="Maximum number of tokens in the response"
                )
            
            with gr.Column(scale=1):
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-p (Nucleus Sampling)",
                    info="Controls diversity of word choices"
                )
                
                repetition_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=1.5,
                    value=1.05,
                    step=0.05,
                    label="Repetition Penalty",
                    info="Reduces repetitive phrases in responses"
                )
    
    # Example questions organised by category
    with gr.Accordion("πŸ’‘ Example Questions by Category", open=True):
        gr.Examples(
            examples=EXAMPLES[:8],  # Show first 8 examples
            inputs=msg,
            label="Quick Start Examples",
        )
        
        # Additional categorised examples
        gr.Markdown(
            """
            ### More Example Categories:
            - **Patient Education**: Understanding conditions, prevention, and treatment basics
            - **Treatment Procedures**: Detailed explanations of dental procedures
            - **Oral Health & Prevention**: Daily care and preventive measures
            - **Paediatric Dentistry**: Children's dental health and development
            - **Emergency & Post-Care**: Urgent situations and aftercare instructions
            """
        )
    
    # About section with professional information
    gr.Markdown(
        """
        ---
        
        ## About DentaInstruct-1.2B
        
        DentaInstruct-1.2B is a specialised language model fine-tuned specifically for dental education and oral health information. 
        Built on the efficient LFM2-1.2B architecture, it combines compact size with domain expertise to provide accurate, 
        educational content about dentistry.
        
        ### Key Features:
        - **Specialised Training**: Fine-tuned on comprehensive dental educational content from the MIRIAD dataset
        - **Efficient Architecture**: 1.17B parameters optimised for fast response times
        - **Broad Coverage**: Knowledgeable about general dentistry, orthodontics, periodontics, endodontics, and more
        - **Educational Focus**: Designed to explain complex dental concepts in accessible language
        - **Multi-context Support**: Can handle patient education, professional discussions, and academic queries
        
        ### Technical Specifications:
        - **Architecture**: Transformer-based language model
        - **Base Model**: LiquidAI LFM2-1.2B
        - **Training Method**: Supervised fine-tuning on dental domain data
        - **Context Length**: 2048 tokens
        - **Inference**: Optimised for GPU acceleration with bfloat16 precision
        
        ### Use Cases:
        - Patient education materials and explanations
        - Dental student study assistance
        - Quick reference for dental terminology
        - Understanding treatment options and procedures
        - Oral health and hygiene guidance
        
        ### Important Considerations:
        - This model is for educational purposes only
        - Not intended for clinical decision-making
        - Information should be verified with professional sources
        - Always consult qualified dental professionals for personal health concerns
        
        ---
        
        **Model Creator**: [@yasserrmd](https://huggingface.co/yasserrmd) | 
        **Space Developer**: [@chrisvoncsefalvay](https://huggingface.co/chrisvoncsefalvay) | 
        **License**: Apache 2.0
        
        πŸ”— [Model Card](https://huggingface.co/yasserrmd/DentaInstruct-1.2B) | 
        πŸ“Š [MIRIAD Dataset](https://huggingface.co/datasets/miriad) | 
        πŸ’¬ [Report Issues](https://huggingface.co/spaces/chrisvoncsefalvay/dental-vqa-comparison/discussions)
        """
    )
    
    # Event handlers
    def respond(message, chat_history, temperature, max_new_tokens, top_p, repetition_penalty):
        """Handle user messages and generate responses"""
        if not message.strip():
            gr.Warning("Please enter a question")
            return "", chat_history
        
        try:
            response = generate_response(
                message, 
                chat_history,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty
            )
            chat_history.append((message, response))
            return "", chat_history
        except Exception as e:
            gr.Error(f"An error occurred: {str(e)}")
            return message, chat_history
    
    # Connect event handlers
    msg.submit(
        respond,
        [msg, chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
        [msg, chatbot],
        queue=True
    )
    
    submit.click(
        respond,
        [msg, chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
        [msg, chatbot],
        queue=True
    )
    
    clear.click(
        lambda: (None, ""),
        None,
        [chatbot, msg],
        queue=False
    )

# Launch configuration
if __name__ == "__main__":
    demo.queue(max_size=10)
    demo.launch(
        share=False,
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860
    )