File size: 26,742 Bytes
26dc4f5
 
cdba9e2
 
62ede92
26dc4f5
 
 
 
 
 
 
d55c559
 
810bbae
0015607
d55c559
810bbae
0015607
d55c559
 
 
 
 
 
 
810bbae
d55c559
26dc4f5
 
d55c559
 
26dc4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ede92
cdba9e2
26dc4f5
 
d55c559
26dc4f5
 
d55c559
26dc4f5
cdba9e2
26dc4f5
 
 
 
 
 
146b507
 
 
 
 
 
26dc4f5
cdba9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
cdba9e2
 
 
26dc4f5
cdba9e2
 
 
 
 
 
 
26dc4f5
1e3577a
 
 
0570cd5
 
1e3577a
0570cd5
1e3577a
0570cd5
 
1e3577a
0570cd5
1e3577a
0570cd5
 
1e3577a
0570cd5
1e3577a
 
 
 
0570cd5
 
 
1e3577a
26dc4f5
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd4e378
 
 
1e3577a
bd4e378
 
 
 
1e3577a
 
bd4e378
 
 
1e3577a
 
 
 
 
 
 
 
 
 
 
 
0570cd5
 
 
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
0570cd5
 
 
1e3577a
 
 
 
0570cd5
 
1e3577a
 
 
 
 
0570cd5
 
 
 
 
1e3577a
 
0570cd5
 
1e3577a
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
1e3577a
 
 
 
0570cd5
 
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
0570cd5
1e3577a
 
 
0570cd5
 
1e3577a
 
 
 
0570cd5
 
1e3577a
0570cd5
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
 
3cf2975
 
 
 
 
 
 
 
 
 
 
cdba9e2
 
 
 
 
 
 
 
 
 
 
1e3577a
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
1e3577a
 
 
0570cd5
 
1e3577a
 
0570cd5
 
1e3577a
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
 
1e3577a
0570cd5
1e3577a
0570cd5
1e3577a
 
 
 
0570cd5
 
1e3577a
 
0570cd5
 
1e3577a
 
 
 
0570cd5
 
1e3577a
 
0570cd5
 
1e3577a
 
 
 
 
0570cd5
 
1e3577a
 
 
 
 
 
 
 
 
 
 
0570cd5
 
1e3577a
0570cd5
1e3577a
 
0570cd5
 
1e3577a
 
0570cd5
 
bd4e378
 
0570cd5
 
1e3577a
 
0570cd5
26dc4f5
 
 
1e3577a
ddb47d4
1e3577a
 
0570cd5
26dc4f5
1e3577a
0570cd5
 
1e3577a
bd4e378
 
 
 
1e3577a
bd4e378
 
 
1e3577a
0570cd5
26dc4f5
 
 
1e3577a
26dc4f5
 
1e3577a
 
 
0570cd5
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0570cd5
1e3577a
 
 
0570cd5
26dc4f5
 
 
 
1e3577a
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
1e3577a
 
 
 
0570cd5
 
bd4e378
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf2975
0570cd5
3cf2975
 
 
1e3577a
 
 
06a3065
1e3577a
 
06a3065
 
1e3577a
06a3065
 
1e3577a
06a3065
 
 
 
 
 
 
 
 
 
26dc4f5
1e3577a
 
0570cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3577a
 
26dc4f5
1e3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dc4f5
 
 
 
 
0570cd5
 
 
3cf2975
0570cd5
 
cdba9e2
 
3cf2975
cdba9e2
 
 
0570cd5
 
 
 
 
 
cdba9e2
 
 
 
 
3cf2975
cdba9e2
 
3cf2975
 
0570cd5
 
3cf2975
26dc4f5
3cf2975
26dc4f5
 
 
3cf2975
 
 
 
 
 
 
26dc4f5
 
 
3cf2975
 
 
 
26dc4f5
 
3cf2975
 
 
 
 
 
 
26dc4f5
 
0570cd5
 
 
 
 
 
06a3065
 
 
 
 
 
 
 
 
26dc4f5
0570cd5
26dc4f5
0570cd5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import spaces

# Model configuration
MODEL_ID = "yasserrmd/DentaInstruct-1.2B"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize model and tokenizer
print(f"Loading model {MODEL_ID}...")

# Load tokenizer - try the fine-tuned model first, then base model
try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    print(f"Loaded tokenizer from {MODEL_ID}")
except Exception as e:
    print(f"Failed to load tokenizer from {MODEL_ID}: {e}")
    print("Using tokenizer from base LFM2 model...")
    try:
        tokenizer = AutoTokenizer.from_pretrained("LiquidAI/LFM2-1.2B")
    except Exception as e2:
        print(f"Failed to load LFM2 tokenizer: {e2}")
        print("Using fallback TinyLlama tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Load model with proper dtype for efficiency
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
    device_map="auto" if torch.cuda.is_available() else None
)

if not torch.cuda.is_available():
    model = model.to(DEVICE)

# Set padding token if not set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

def format_prompt(message, history):
    """Format the prompt for the model"""
    messages = []
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    # Add current message
    messages.append({"role": "user", "content": message})
    
    # Apply chat template
    if hasattr(tokenizer, 'apply_chat_template'):
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    else:
        # Fallback formatting
        prompt = ""
        for msg in messages:
            if msg["role"] == "user":
                prompt += f"User: {msg['content']}\n"
            else:
                prompt += f"Assistant: {msg['content']}\n"
        prompt += "Assistant: "
    
    return prompt

@spaces.GPU(duration=60)
def generate_response_streaming(
    message,
    history,
    temperature=0.3,
    max_new_tokens=512,
    top_p=0.95,
    repetition_penalty=1.05,
):
    """Generate response from the model with streaming"""
    
    # Format the prompt
    prompt = format_prompt(message, history)
    
    # Tokenize input
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
    
    # Move to device and filter out token_type_ids if present
    model_inputs = {}
    for k, v in inputs.items():
        if k != 'token_type_ids':  # Filter out token_type_ids
            model_inputs[k] = v.to(model.device)
    
    # Set up the streamer
    streamer = TextIteratorStreamer(
        tokenizer,
        skip_prompt=True,
        skip_special_tokens=True,
        timeout=30.0
    )
    
    # Generation parameters
    generation_kwargs = dict(
        **model_inputs,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        streamer=streamer,
    )
    
    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Stream the response
    partial_response = ""
    for new_text in streamer:
        partial_response += new_text
        yield partial_response
    
    thread.join()

# Question categories for the carousel
QUESTION_CATEGORIES = {
    "Patient education": [
        "What are the main types of dental cavities and how can I prevent them?",
        "Explain the stages of gum disease from gingivitis to periodontitis",
        "What should I expect during my first dental cleaning appointment?"
    ],
    "Procedures": [
        "Walk me through the steps of a root canal treatment",
        "What's the difference between a crown and a veneer?",
        "How does the dental implant process work from start to finish?"
    ],
    "Preventative care advice": [
        "What's the proper brushing technique for optimal plaque removal?",
        "How does fluoride protect teeth and is it safe for children?",
        "What foods should I avoid to maintain healthy teeth?"
    ],
    "Anatomy and terms": [
        "Explain the anatomy of a tooth from crown to root",
        "What are the different types of teeth and their functions?",
        "What is the difference between enamel, dentin, and pulp?"
    ]
}

# Custom CSS for the redesigned interface
custom_css = """
/* Reset and base styles */
* {
    box-sizing: border-box;
}

/* Header with credits */
.header-container {
    background: linear-gradient(135deg, #1e40af 0%, #3b82f6 50%, #60a5fa 100%);
    border-radius: 16px;
    padding: 32px;
    margin-bottom: 24px;
    color: white;
    text-align: center;
    box-shadow: 0 8px 32px rgba(30, 64, 175, 0.3);
}

.dark .header-container {
    background: linear-gradient(135deg, #1e3a8a 0%, #3730a3 50%, #4338ca 100%);
}

.header-title {
    font-size: 40px;
    font-weight: 800;
    margin-bottom: 8px;
    text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.header-subtitle {
    font-size: 18px;
    opacity: 0.95;
    margin-bottom: 16px;
}

.header-credits {
    font-size: 14px;
    opacity: 0.9;
    margin-bottom: 12px;
}

.header-credits a {
    color: #fef3c7;
    text-decoration: none;
    font-weight: 500;
}

.header-credits a:hover {
    color: #fde68a;
    text-decoration: underline;
}

.social-icon {
    display: inline-block;
    margin-left: 8px;
    text-decoration: none;
    font-size: 18px;
    opacity: 0.85;
    transition: all 0.2s ease;
    vertical-align: middle;
}

.social-icon:hover {
    opacity: 1;
    transform: translateY(-2px);
}

/* Mini model card - skeuomorphic design */
.model-card {
    background: linear-gradient(145deg, #f8fafc 0%, #e2e8f0 100%);
    border: 1px solid #cbd5e1;
    border-radius: 16px;
    padding: 20px;
    margin-bottom: 24px;
    box-shadow: 
        0 10px 25px rgba(0,0,0,0.1),
        inset 0 1px 0 rgba(255,255,255,0.6);
    position: relative;
    overflow: hidden;
}

.dark .model-card {
    background: linear-gradient(145deg, #374151 0%, #1f2937 100%);
    border: 1px solid #4b5563;
    box-shadow: 
        0 10px 25px rgba(0,0,0,0.3),
        inset 0 1px 0 rgba(255,255,255,0.1);
}

.model-card::before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    height: 2px;
    background: linear-gradient(90deg, #3b82f6, #8b5cf6, #ef4444, #f59e0b);
}

.model-card-title {
    font-size: 20px;
    font-weight: 700;
    color: #1e293b;
    margin-bottom: 12px;
    display: flex;
    align-items: center;
    gap: 8px;
}

.dark .model-card-title {
    color: #f1f5f9;
}

.model-stats {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(120px, 1fr));
    gap: 12px;
    margin-bottom: 16px;
}

.model-stat {
    background: rgba(59, 130, 246, 0.1);
    border: 1px solid rgba(59, 130, 246, 0.2);
    border-radius: 8px;
    padding: 8px 12px;
    text-align: center;
}

.dark .model-stat {
    background: rgba(59, 130, 246, 0.15);
    border: 1px solid rgba(59, 130, 246, 0.3);
}

.stat-value {
    font-weight: 700;
    font-size: 14px;
    color: #3b82f6;
}

.dark .stat-value {
    color: #60a5fa;
}

.stat-label {
    font-size: 11px;
    color: #64748b;
    text-transform: uppercase;
    letter-spacing: 0.5px;
    margin-top: 2px;
}

.dark .stat-label {
    color: #94a3b8;
}

.model-description {
    color: #475569;
    font-size: 14px;
    line-height: 1.6;
}

.dark .model-description {
    color: #cbd5e1;
}

/* Question carousel - right side */
.question-carousel {
    background: linear-gradient(145deg, #ffffff 0%, #f1f5f9 100%);
    border: 1px solid #e2e8f0;
    border-radius: 16px;
    padding: 20px;
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.08),
        inset 0 1px 0 rgba(255,255,255,0.8);
    height: fit-content;
    position: sticky;
    top: 20px;
}

.dark .question-carousel {
    background: linear-gradient(145deg, #1f2937 0%, #111827 100%);
    border: 1px solid #374151;
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.2),
        inset 0 1px 0 rgba(255,255,255,0.05);
}

.carousel-title {
    font-size: 18px;
    font-weight: 700;
    color: #1e293b;
    margin-bottom: 16px;
    text-align: center;
}

.dark .carousel-title {
    color: #f1f5f9;
}

.carousel-card {
    background: linear-gradient(135deg, #fafafa 0%, #f4f4f5 100%);
    border: 1px solid #e4e4e7;
    border-radius: 12px;
    padding: 16px;
    margin-bottom: 16px;
    box-shadow: 
        0 2px 8px rgba(0,0,0,0.06),
        inset 0 1px 0 rgba(255,255,255,0.7);
    transition: transform 0.2s, box-shadow 0.2s;
}

.dark .carousel-card {
    background: linear-gradient(135deg, #374151 0%, #2d3748 100%);
    border: 1px solid #4b5563;
    box-shadow: 
        0 2px 8px rgba(0,0,0,0.15),
        inset 0 1px 0 rgba(255,255,255,0.05);
}

.carousel-card:hover {
    transform: translateY(-2px);
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.12),
        inset 0 1px 0 rgba(255,255,255,0.7);
}

.dark .carousel-card:hover {
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.25),
        inset 0 1px 0 rgba(255,255,255,0.05);
}

.carousel-card-title {
    font-weight: 600;
    color: #3b82f6;
    margin-bottom: 12px;
    font-size: 15px;
}

.dark .carousel-card-title {
    color: #60a5fa;
}

.question-button {
    display: block;
    width: 100%;
    background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
    border: 1px solid #cbd5e1;
    border-radius: 8px;
    padding: 8px 12px;
    margin-bottom: 8px;
    font-size: 13px;
    color: #475569;
    text-align: left;
    cursor: pointer;
    transition: all 0.2s;
    box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}

.dark .question-button {
    background: linear-gradient(135deg, #4b5563 0%, #374151 100%);
    border: 1px solid #6b7280;
    color: #d1d5db;
}

.question-button:hover {
    background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%);
    color: white;
    border-color: #3b82f6;
    transform: translateY(-1px);
    box-shadow: 0 2px 8px rgba(59, 130, 246, 0.3);
}

/* Loading animation */
@keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.5; }
    100% { opacity: 1; }
}

.processing {
    animation: pulse 1.5s ease-in-out infinite;
}

/* Typing indicator */
@keyframes typing {
    0%, 60%, 100% { opacity: 0.3; }
    30% { opacity: 1; }
}

.typing-indicator {
    display: inline-block;
    animation: typing 1.4s infinite;
}

.question-button:last-child {
    margin-bottom: 0;
}

/* Main layout */
.main-layout {
    display: grid;
    grid-template-columns: 2fr 1fr;
    gap: 24px;
    margin-bottom: 24px;
}

@media (max-width: 1024px) {
    .main-layout {
        grid-template-columns: 1fr;
    }
    
    .question-carousel {
        position: static;
    }
}

/* Chat interface improvements */
.chat-container {
    background: linear-gradient(145deg, #ffffff 0%, #f8fafc 100%);
    border: 1px solid #e2e8f0;
    border-radius: 16px;
    padding: 20px;
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.08),
        inset 0 1px 0 rgba(255,255,255,0.8);
}

.dark .chat-container {
    background: linear-gradient(145deg, #1f2937 0%, #111827 100%);
    border: 1px solid #374151;
    box-shadow: 
        0 4px 16px rgba(0,0,0,0.2),
        inset 0 1px 0 rgba(255,255,255,0.05);
}

/* Citation boxes */
.citation-section {
    margin-top: 32px;
    padding-top: 24px;
    border-top: 2px solid #e2e8f0;
}

.dark .citation-section {
    border-top: 2px solid #374151;
}

.citation-title {
    font-size: 20px;
    font-weight: 700;
    color: #1e293b;
    margin-bottom: 16px;
    text-align: center;
}

.dark .citation-title {
    color: #f1f5f9;
}

.citation-boxes {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
    gap: 16px;
}

.citation-box {
    background: linear-gradient(145deg, #f8fafc 0%, #e2e8f0 100%);
    border: 1px solid #cbd5e1;
    border-radius: 12px;
    padding: 16px;
    box-shadow: 
        0 4px 12px rgba(0,0,0,0.08),
        inset 0 1px 0 rgba(255,255,255,0.6);
}

.dark .citation-box {
    background: linear-gradient(145deg, #374151 0%, #1f2937 100%);
    border: 1px solid #4b5563;
    box-shadow: 
        0 4px 12px rgba(0,0,0,0.2),
        inset 0 1px 0 rgba(255,255,255,0.1);
}

.citation-box h4 {
    color: #3b82f6;
    font-weight: 600;
    margin-bottom: 8px;
    font-size: 16px;
}

.dark .citation-box h4 {
    color: #60a5fa;
}

.citation-content {
    background: #1f2937;
    color: #e5e7eb;
    padding: 12px;
    border-radius: 8px;
    font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace;
    font-size: 12px;
    line-height: 1.4;
    overflow-x: auto;
    white-space: pre-wrap;
    word-break: break-all;
    margin-top: 8px;
}

.dark .citation-content {
    background: #111827;
    border: 1px solid #374151;
}

/* Advanced settings styling */
.advanced-settings {
    background: linear-gradient(145deg, #f1f5f9 0%, #e2e8f0 100%);
    border: 1px solid #cbd5e1;
    border-radius: 12px;
    margin: 16px 0;
    box-shadow: 
        0 2px 8px rgba(0,0,0,0.06),
        inset 0 1px 0 rgba(255,255,255,0.7);
}

.dark .advanced-settings {
    background: linear-gradient(145deg, #374151 0%, #1f2937 100%);
    border: 1px solid #4b5563;
    box-shadow: 
        0 2px 8px rgba(0,0,0,0.15),
        inset 0 1px 0 rgba(255,255,255,0.05);
}

/* Disclaimer styling */
.disclaimer-box {
    background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
    border: 2px solid #f59e0b;
    border-radius: 12px;
    padding: 16px 20px;
    margin: 20px 0;
    box-shadow: 
        0 4px 12px rgba(245, 158, 11, 0.2),
        inset 0 1px 0 rgba(255,255,255,0.5);
    position: relative;
}

.dark .disclaimer-box {
    background: linear-gradient(135deg, #92400e 0%, #78350f 100%);
    border: 2px solid #f59e0b;
    color: #fef3c7;
    box-shadow: 
        0 4px 12px rgba(245, 158, 11, 0.3),
        inset 0 1px 0 rgba(255,255,255,0.1);
}

.disclaimer-box::before {
    content: '';
    position: absolute;
    left: 0;
    top: 0;
    bottom: 0;
    width: 4px;
    background: #f59e0b;
    border-radius: 2px 0 0 2px;
}

.disclaimer-title {
    font-weight: 600;
    color: #92400e;
    margin-bottom: 8px;
    display: flex;
    align-items: center;
    gap: 8px;
    font-size: 15px;
}

.dark .disclaimer-title {
    color: #fbbf24;
}

.disclaimer-text {
    color: #78350f;
    font-size: 14px;
    line-height: 1.5;
}

.dark .disclaimer-text {
    color: #fef3c7;
}

/* Button improvements */
.gr-button {
    border-radius: 8px !important;
    font-weight: 600 !important;
    transition: all 0.2s ease !important;
}

.gr-button-primary {
    background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
    border: none !important;
    color: white !important;
    box-shadow: 0 2px 4px rgba(59, 130, 246, 0.3) !important;
}

.gr-button-primary:hover {
    background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
    transform: translateY(-1px) !important;
    box-shadow: 0 4px 12px rgba(59, 130, 246, 0.4) !important;
}

/* Responsive design */
@media (max-width: 768px) {
    .header-title {
        font-size: 28px;
    }
    
    .model-stats {
        grid-template-columns: repeat(2, 1fr);
    }
    
    .social-icon {
        font-size: 16px;
    }
    
    .citation-boxes {
        grid-template-columns: 1fr;
    }
}
"""

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
    
    # Header with credits and social links
    gr.HTML(
        """
        <div class="header-container">
            <h1 class="header-title">🦷 DentaInstruct-1.2B Demo</h1>
            <p class="header-subtitle">Advanced AI assistant for dental education and oral health information</p>
            <div class="header-credits">
                Model by <a href="https://huggingface.co/yasserrmd" target="_blank">yasserrmd</a>
                <a href="https://github.com/YASSERRMD" target="_blank" class="social-icon" title="GitHub">πŸ”—</a>
                <a href="https://www.linkedin.com/in/moyasser" target="_blank" class="social-icon" title="LinkedIn">πŸ’Ό</a>
                <span style="margin: 0 10px;">/</span>
                Space by <a href="https://huggingface.co/chrisvoncsefalvay" target="_blank">Chris von Csefalvay</a>
                <a href="https://github.com/chrisvoncsefalvay" target="_blank" class="social-icon" title="GitHub">πŸ”—</a>
                <a href="https://twitter.com/epichrisis" target="_blank" class="social-icon" title="X">𝕏</a>
                <a href="https://chrisvoncsefalvay.com" target="_blank" class="social-icon" title="Website">🌐</a>
            </div>
        </div>
        """
    )
    
    # Mini model card with skeuomorphic design
    gr.HTML(
        """
        <div class="model-card">
            <div class="model-card-title">
                🧠 Model Information
            </div>
            <div class="model-stats">
                <div class="model-stat">
                    <div class="stat-value">1.17B</div>
                    <div class="stat-label">Parameters</div>
                </div>
                <div class="model-stat">
                    <div class="stat-value">LFM2-1.2B</div>
                    <div class="stat-label">Base Model</div>
                </div>
                <div class="model-stat">
                    <div class="stat-value">MIRIAD</div>
                    <div class="stat-label">Dataset</div>
                </div>
                <div class="model-stat">
                    <div class="stat-value">2048</div>
                    <div class="stat-label">Context Length</div>
                </div>
            </div>
            <div class="model-description">
                Specialised language model fine-tuned for dental education and oral health information. 
                Built on efficient LFM2 architecture with supervised fine-tuning on comprehensive dental content.
            </div>
        </div>
        """
    )
    
    # Disclaimer box
    gr.HTML(
        """
        <div class="disclaimer-box">
            <div class="disclaimer-title">
                ⚠️ Educational Use Only - Important Medical Disclaimer
            </div>
            <div class="disclaimer-text">
                This AI model provides educational information about dental topics and is designed for learning purposes only. 
                It is <strong>NOT</strong> a substitute for professional dental or medical advice, diagnosis, or treatment. 
                Always seek the advice of your dentist or qualified healthcare provider with any questions about a medical condition or treatment.
            </div>
        </div>
        """
    )
    
    # Main layout with chat on left, carousel on right
    with gr.Row(elem_classes="main-layout"):
        # Left side - Chat interface
        with gr.Column(scale=2, elem_classes="chat-container"):
            chatbot = gr.Chatbot(
                height=500,
                label="Response",
                show_label=True,
                avatar_images=None,
                bubble_full_width=False,
                render_markdown=True,
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    label="Your dental question",
                    placeholder="Ask about dental procedures, oral health, treatment options, or any dental topic...",
                    lines=3,
                    scale=4,
                    container=False,
                )
                
            with gr.Row():
                submit = gr.Button("Send Question", variant="primary", scale=1, elem_id="send-btn")
                clear = gr.Button("Clear Chat", scale=1)
            
            # Status indicator  
            status = gr.Textbox(value="", label="Status", visible=False)
        
        # Right side - Question carousel
        with gr.Column(scale=1):
            gr.HTML("""
            <div class="question-carousel">
                <div class="carousel-title">πŸ’‘ Quick Questions</div>
            </div>
            """)
            
            # Create buttons for quick questions
            question_buttons = []
            for category, questions in QUESTION_CATEGORIES.items():
                with gr.Group():
                    gr.HTML(f'<div class="carousel-card"><div class="carousel-card-title">{category}</div></div>')
                    for question in questions:
                        btn = gr.Button(
                            question,
                            variant="secondary",
                            size="sm",
                            elem_classes="question-button"
                        )
                        question_buttons.append((btn, question))
    
    # Advanced settings in collapsible section
    with gr.Accordion("βš™οΈ Advanced Settings", open=False, elem_classes="advanced-settings"):
        with gr.Row():
            with gr.Column(scale=1):
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.3,
                    step=0.1,
                    label="Temperature",
                    info="Lower values (0.1-0.3) for factual responses, higher (0.7-1.0) for creative explanations"
                )
                
                max_new_tokens = gr.Slider(
                    minimum=64,
                    maximum=1024,
                    value=512,
                    step=64,
                    label="Response Length",
                    info="Maximum number of tokens in the response"
                )
            
            with gr.Column(scale=1):
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-p (Nucleus Sampling)",
                    info="Controls diversity of word choices"
                )
                
                repetition_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=1.5,
                    value=1.05,
                    step=0.05,
                    label="Repetition Penalty",
                    info="Reduces repetitive phrases in responses"
                )
    
    # Citation boxes section
    gr.HTML(
        """
        <div class="citation-section">
            <div class="citation-title">πŸ“š Citations</div>
            <div class="citation-boxes">
                <div class="citation-box">
                    <h4>MIRIAD Dataset</h4>
                    <p>Training dataset used for fine-tuning the dental knowledge base.</p>
                    <div class="citation-content">@misc{miriad2024,
  title={MIRIAD: A Multi-modal Instruction-following Dataset for Dentistry},
  author={MIRIAD Team},
  year={2024},
  url={https://huggingface.co/datasets/miriad}
}</div>
                </div>
                <div class="citation-box">
                    <h4>DentaInstruct-1.2B Model</h4>
                    <p>The fine-tuned model used in this demonstration.</p>
                    <div class="citation-content">@misc{dentainstruct2024,
  title={DentaInstruct-1.2B: A Dental Education Language Model},
  author={yasserrmd},
  year={2024},
  url={https://huggingface.co/yasserrmd/DentaInstruct-1.2B}
}</div>
                </div>
            </div>
        </div>
        """
    )
    
    # Event handlers
    def respond(message, chat_history, temperature, max_new_tokens, top_p, repetition_penalty):
        """Handle user messages and generate responses"""
        if not message.strip():
            gr.Warning("Please enter a question")
            return "", chat_history, gr.update(value="Send Question")
        
        try:
            # Show initial processing state
            yield "", chat_history + [(message, "πŸ”„ Starting...")], gr.update(value="⏳ Generating...")
            
            # Stream the response
            partial_response = ""
            for chunk in generate_response_streaming(
                message, 
                chat_history,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty
            ):
                partial_response = chunk
                # Update chat with partial response and typing indicator
                current_history = chat_history + [(message, partial_response + " ●")]
                yield "", current_history, gr.update(value="⏳ Generating...")
            
            # Final update with complete response
            chat_history.append((message, partial_response))
            yield "", chat_history, gr.update(value="Send Question")
            
        except Exception as e:
            gr.Error(f"An error occurred: {str(e)}")
            yield message, chat_history, gr.update(value="Send Question")
    
    # Connect event handlers with loading states
    msg.submit(
        respond,
        [msg, chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
        [msg, chatbot, submit],
        queue=True,
        show_progress="full"
    ).then(
        lambda: gr.update(interactive=True),
        None,
        [msg]
    )
    
    submit.click(
        lambda: gr.update(interactive=False),
        None,
        [msg]
    ).then(
        respond,
        [msg, chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
        [msg, chatbot, submit],
        queue=True,
        show_progress="full"
    ).then(
        lambda: gr.update(interactive=True),
        None,
        [msg]
    )
    
    clear.click(
        lambda: (None, ""),
        None,
        [chatbot, msg],
        queue=False
    )
    
    # Connect question button click handlers
    for btn, question_text in question_buttons:
        btn.click(
            lambda q=question_text: q,
            None,
            msg,
            queue=False
        )

# Launch configuration
if __name__ == "__main__":
    demo.queue(max_size=10)
    demo.launch(
        share=False,
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860
    )