|
from fastapi import FastAPI, HTTPException |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from transformers import AutoTokenizer |
|
from onnxruntime import InferenceSession |
|
import numpy as np |
|
import os |
|
from typing import Dict |
|
|
|
app = FastAPI(title="ONNX Model API with Tokenizer") |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Xenova/multi-qa-mpnet-base-dot-v1") |
|
session = InferenceSession("model.onnx") |
|
|
|
def convert_outputs(outputs): |
|
"""Ensure all numpy values are converted to Python native types""" |
|
if isinstance(outputs, (np.generic, np.ndarray)): |
|
return outputs.item() if outputs.ndim == 0 else outputs.tolist() |
|
return outputs |
|
|
|
@app.post("/api/process") |
|
async def process_text(request: Dict[str, str]): |
|
try: |
|
text = request.get("text", "") |
|
|
|
|
|
inputs = tokenizer( |
|
text, |
|
return_tensors="np", |
|
padding=True, |
|
truncation=True, |
|
max_length=32 |
|
) |
|
|
|
|
|
onnx_inputs = { |
|
"input_ids": inputs["input_ids"].astype(np.int64), |
|
"attention_mask": inputs["attention_mask"].astype(np.int64) |
|
} |
|
|
|
|
|
outputs = session.run(None, onnx_inputs) |
|
|
|
|
|
processed_outputs = [convert_outputs(output) for output in outputs] |
|
|
|
return { |
|
"embedding": processed_outputs[0], |
|
"tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) |
|
} |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=400, detail=str(e)) |
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
return {"status": "healthy"} |