|
from fastapi import FastAPI, HTTPException, Request |
|
from fastapi.encoders import jsonable_encoder |
|
from onnxruntime import InferenceSession |
|
from transformers import AutoTokenizer |
|
import numpy as np |
|
import uvicorn |
|
|
|
app = FastAPI() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"Xenova/multi-qa-mpnet-base-dot-v1", |
|
use_fast=True, |
|
legacy=False |
|
) |
|
|
|
|
|
session = InferenceSession("model.onnx") |
|
|
|
def convert_output(value): |
|
"""Recursively convert numpy types to native Python types""" |
|
if isinstance(value, (np.generic, np.ndarray)): |
|
if value.size == 1: |
|
return float(value.item()) |
|
return value.astype(float).tolist() |
|
elif isinstance(value, list): |
|
return [convert_output(x) for x in value] |
|
elif isinstance(value, dict): |
|
return {k: convert_output(v) for k, v in value.items()} |
|
return value |
|
|
|
@app.post("/api/predict") |
|
async def predict(request: Request): |
|
try: |
|
data = await request.json() |
|
text = data.get("text", "") |
|
|
|
if not text: |
|
raise HTTPException(status_code=400, detail="No text provided") |
|
|
|
|
|
inputs = tokenizer( |
|
text, |
|
return_tensors="np", |
|
padding=False, |
|
truncation=False, |
|
add_special_tokens=True |
|
) |
|
|
|
onnx_inputs = { |
|
"input_ids": np.array(inputs["input_ids"], dtype=np.int64), |
|
"attention_mask": np.array(inputs["attention_mask"], dtype=np.int64) |
|
} |
|
|
|
outputs = session.run(None, onnx_inputs) |
|
print("OUTPUTS",outputs) |
|
|
|
return { |
|
"embedding": outputs[0][0].astype(float).tolist(), |
|
"input_ids": inputs["input_ids"][0].tolist(), |
|
"attention_mask": inputs["attention_mask"][0].tolist() |
|
} |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |