chryzxc's picture
Update app.py
bfdd5dc verified
from fastapi import FastAPI, HTTPException, Request
from fastapi.encoders import jsonable_encoder
from onnxruntime import InferenceSession
from transformers import AutoTokenizer
import numpy as np
import uvicorn
app = FastAPI()
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Xenova/multi-qa-mpnet-base-dot-v1",
use_fast=True,
legacy=False
)
# Load ONNX model
session = InferenceSession("model.onnx")
def convert_output(value):
"""Recursively convert numpy types to native Python types"""
if isinstance(value, (np.generic, np.ndarray)):
if value.size == 1:
return float(value.item()) # Convert single values to float
return value.astype(float).tolist() # Convert arrays to list
elif isinstance(value, list):
return [convert_output(x) for x in value]
elif isinstance(value, dict):
return {k: convert_output(v) for k, v in value.items()}
return value
@app.post("/api/predict")
async def predict(request: Request):
try:
data = await request.json()
text = data.get("text", "")
if not text:
raise HTTPException(status_code=400, detail="No text provided")
# Tokenize input
inputs = tokenizer(
text,
return_tensors="np",
padding=False, # Disable padding
truncation=False, # Disable truncation
add_special_tokens=True # Ensure CLS/SEP tokens
)
onnx_inputs = {
"input_ids": np.array(inputs["input_ids"], dtype=np.int64),
"attention_mask": np.array(inputs["attention_mask"], dtype=np.int64)
}
outputs = session.run(None, onnx_inputs)
print("OUTPUTS",outputs)
# Prepare response with converted types
return {
"embedding": outputs[0][0].astype(float).tolist(),
"input_ids": inputs["input_ids"][0].tolist(),
"attention_mask": inputs["attention_mask"][0].tolist()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)