from fastapi import FastAPI, Request, HTTPException from fastapi.middleware.cors import CORSMiddleware from onnxruntime import InferenceSession import numpy as np import os import uvicorn app = FastAPI(title="ONNX Model API") # CORS configuration app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) # Load ONNX model session = InferenceSession("model.onnx") # Essential for Spaces health checks @app.get("/") def read_root(): return {"status": "ONNX Model API is running"} # Main prediction endpoint @app.post("/predict") async def predict(request: Request): try: data = await request.json() input_ids = np.array(data["input_ids"], dtype=np.int64).reshape(1, -1) attention_mask = np.array(data["attention_mask"], dtype=np.int64).reshape(1, -1) outputs = session.run(None, { "input_ids": input_ids, "attention_mask": attention_mask }) result = { "embedding": outputs[0].astype(np.float32).tolist() # Force float32 conversion } return jsonable_encoder(result) except Exception as e: raise HTTPException(status_code=400, detail=str(e)) # Special endpoint for Spaces compatibility @app.post("/api/predict") async def spaces_predict(request: Request): return await predict(request) if __name__ == "__main__": uvicorn.run( app, host="0.0.0.0", port=7860, # Required for Spaces: proxy_headers=True, forwarded_allow_ips="*" )