from fastapi import FastAPI, HTTPException, Request from fastapi.encoders import jsonable_encoder from onnxruntime import InferenceSession from transformers import AutoTokenizer import numpy as np import uvicorn app = FastAPI() # Initialize tokenizer tokenizer = AutoTokenizer.from_pretrained( "Xenova/multi-qa-mpnet-base-dot-v1", use_fast=True, legacy=False ) # Load ONNX model session = InferenceSession("model.onnx") def convert_output(value): """Recursively convert numpy types to native Python types""" if isinstance(value, (np.generic, np.ndarray)): if value.size == 1: return float(value.item()) # Convert single values to float return value.astype(float).tolist() # Convert arrays to list elif isinstance(value, list): return [convert_output(x) for x in value] elif isinstance(value, dict): return {k: convert_output(v) for k, v in value.items()} return value @app.post("/api/predict") async def predict(request: Request): try: data = await request.json() text = data.get("text", "") if not text: raise HTTPException(status_code=400, detail="No text provided") # Tokenize input inputs = tokenizer( text, return_tensors="np", padding=False, # Disable padding truncation=False, # Disable truncation add_special_tokens=True # Ensure CLS/SEP tokens ) onnx_inputs = { "input_ids": np.array(inputs["input_ids"], dtype=np.int64), "attention_mask": np.array(inputs["attention_mask"], dtype=np.int64) } outputs = session.run(None, onnx_inputs) print("OUTPUTS",outputs) # Prepare response with converted types return { "embedding": outputs[0][0].astype(float).tolist(), "input_ids": inputs["input_ids"][0].tolist(), "attention_mask": inputs["attention_mask"][0].tolist() } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)