Spaces:
Sleeping
Sleeping
# app.py - RLAnOxPeptide Gradio Web Application | |
# This script integrates both the predictor and generator into a user-friendly web UI. | |
import os | |
import torch | |
import torch.nn as nn | |
import pandas as pd | |
import joblib | |
import numpy as np | |
import gradio as gr | |
from sklearn.cluster import KMeans | |
from tqdm import tqdm | |
import transformers | |
# Suppress verbose logging from transformers | |
transformers.logging.set_verbosity_error() | |
# -------------------------------------------------------------------------- | |
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS | |
# To make this app self-contained, we copy necessary class definitions here. | |
# These should match the versions used during training. | |
# -------------------------------------------------------------------------- | |
# --- Vocabulary Definition (from both scripts) --- | |
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY" | |
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)} | |
token2id["<PAD>"] = 0 | |
token2id["<EOS>"] = 1 | |
id2token = {i: t for t, i in token2id.items()} | |
VOCAB_SIZE = len(token2id) | |
# --- Predictor Model Architecture (from antioxidant_predictor_5.py) --- | |
class AntioxidantPredictor(nn.Module): | |
# This class definition should be an exact copy from your project | |
def __init__(self, input_dim, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1): | |
super(AntioxidantPredictor, self).__init__() | |
self.input_dim = input_dim | |
self.t5_dim = 1024 | |
self.hand_crafted_dim = self.input_dim - self.t5_dim | |
encoder_layer = nn.TransformerEncoderLayer( | |
d_model=self.t5_dim, nhead=transformer_heads, | |
dropout=transformer_dropout, batch_first=True | |
) | |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers) | |
self.mlp = nn.Sequential( | |
nn.Linear(self.input_dim, 512), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Linear(512, 256), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Linear(256, 1) | |
) | |
self.temperature = nn.Parameter(torch.ones(1)) | |
def forward(self, fused_features): | |
tr_features = fused_features[:, :self.t5_dim] | |
hand_features = fused_features[:, self.t5_dim:] | |
tr_features_unsqueezed = tr_features.unsqueeze(1) | |
transformer_output = self.transformer_encoder(tr_features_unsqueezed) | |
transformer_output_pooled = transformer_output.mean(dim=1) | |
combined_features = torch.cat((transformer_output_pooled, hand_features), dim=1) | |
logits = self.mlp(combined_features) | |
return logits / self.temperature | |
def get_temperature(self): | |
return self.temperature.item() | |
# --- Generator Model Architecture (from generator.py) --- | |
class ProtT5Generator(nn.Module): | |
# This class definition should be an exact copy from your project | |
def __init__(self, vocab_size, embed_dim=512, num_layers=6, num_heads=8, dropout=0.1): | |
super(ProtT5Generator, self).__init__() | |
self.embed_tokens = nn.Embedding(vocab_size, embed_dim, padding_idx=token2id["<PAD>"]) | |
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dropout=dropout, batch_first=True) | |
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.lm_head = nn.Linear(embed_dim, vocab_size) | |
self.vocab_size = vocab_size | |
self.eos_token_id = token2id["<EOS>"] | |
self.pad_token_id = token2id["<PAD>"] | |
def forward(self, input_ids): | |
embeddings = self.embed_tokens(input_ids) | |
encoder_output = self.encoder(embeddings) | |
logits = self.lm_head(encoder_output) | |
return logits | |
def sample(self, batch_size, max_length=20, device="cpu", temperature=2.5, min_decoded_length=3): | |
start_token = torch.randint(2, self.vocab_size, (batch_size, 1), device=device) | |
generated = start_token | |
for _ in range(max_length - 1): | |
logits = self.forward(generated) | |
next_logits = logits[:, -1, :] / temperature | |
if generated.size(1) < min_decoded_length: | |
next_logits[:, self.eos_token_id] = -float("inf") | |
probs = torch.softmax(next_logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated = torch.cat((generated, next_token), dim=1) | |
if (next_token == self.eos_token_id).all(): | |
break | |
return generated | |
def decode(self, token_ids_batch): | |
seqs = [] | |
for ids_tensor in token_ids_batch: | |
seq = "" | |
# Start from index 1 to skip the initial random start token | |
for token_id in ids_tensor.tolist()[1:]: | |
if token_id == self.eos_token_id: break | |
if token_id == self.pad_token_id: continue | |
seq += id2token.get(token_id, "?") | |
seqs.append(seq) | |
return seqs | |
# --- Feature Extraction Logic (from feature_extract.py) --- | |
# Note: You need the actual ProtT5Model and extract_features here. | |
# Assuming they are in a file named `feature_extract.py` in the same directory. | |
try: | |
from feature_extract import ProtT5Model as FeatureProtT5Model, extract_features | |
except ImportError: | |
raise gr.Error("Failed to import feature_extract.py. Please ensure the file is in the same directory as app.py.") | |
# --- Clustering Logic (from generator.py) --- | |
def cluster_sequences(generator, sequences, num_clusters, device): | |
if not sequences or len(sequences) < num_clusters: | |
return sequences[:num_clusters] | |
with torch.no_grad(): | |
token_ids_list = [] | |
max_len = max(len(seq) for seq in sequences) + 2 # Start token + EOS | |
for seq in sequences: | |
# Recreate encoding to match how generator sees it (with start token) | |
ids = [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id] | |
ids = [np.random.randint(2, VOCAB_SIZE)] + ids # Add a dummy start token | |
ids += [token2id["<PAD>"]] * (max_len - len(ids)) | |
token_ids_list.append(ids) | |
input_ids = torch.tensor(token_ids_list, dtype=torch.long, device=device) | |
embeddings = generator.embed_tokens(input_ids) | |
mask = (input_ids != token2id["<PAD>"]).unsqueeze(-1).float() | |
embeddings = embeddings * mask | |
lengths = mask.sum(dim=1) | |
seq_embeds = embeddings.sum(dim=1) / (lengths + 1e-9) | |
seq_embeds_np = seq_embeds.cpu().numpy() | |
kmeans = KMeans(n_clusters=int(num_clusters), random_state=42, n_init='auto').fit(seq_embeds_np) | |
representatives = [] | |
for i in range(int(num_clusters)): | |
indices = np.where(kmeans.labels_ == i)[0] | |
if len(indices) == 0: continue | |
cluster_center = kmeans.cluster_centers_[i] | |
cluster_embeddings = seq_embeds_np[indices] | |
distances = np.linalg.norm(cluster_embeddings - cluster_center, axis=1) | |
representative_index = indices[np.argmin(distances)] | |
representatives.append(sequences[representative_index]) | |
return representatives | |
# -------------------------------------------------------------------------- | |
# SECTION 2: GLOBAL MODEL LOADING | |
# Load all models and dependencies once when the app starts. | |
# -------------------------------------------------------------------------- | |
print("Loading all models and dependencies. Please wait...") | |
DEVICE = "cpu" # Use CPU for compatibility with Hugging Face free tier | |
try: | |
# --- Define all required file paths here --- | |
# !! IMPORTANT: Ensure these are relative paths to the files in your Space !! | |
PREDICTOR_CHECKPOINT_PATH = "checkpoints/final_rl_model_logitp0.1_calibrated_FINETUNED_PROTT5.pth" | |
SCALER_PATH = "checkpoints/scaler_FINETUNED_PROTT5.pkl" | |
GENERATOR_CHECKPOINT_PATH = "generator_checkpoints_v3.6/final_generator_model.pth" | |
PROTT5_BASE_MODEL_PATH = "prott5/model/" | |
FINETUNED_PROTT5_FOR_FEATURES_PATH = "prott5/model/finetuned_prott5.bin" | |
# --- Load Predictor Components --- | |
print("Loading Predictor Model...") | |
PREDICTOR_MODEL = AntioxidantPredictor( | |
input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1 | |
) | |
PREDICTOR_MODEL.load_state_dict(torch.load(PREDICTOR_CHECKPOINT_PATH, map_location=DEVICE)) | |
PREDICTOR_MODEL.to(DEVICE) | |
PREDICTOR_MODEL.eval() | |
print("✅ Predictor model loaded.") | |
print("Loading Scaler...") | |
SCALER = joblib.load(SCALER_PATH) | |
print("✅ Scaler loaded.") | |
print("Loading ProtT5 Feature Extractor...") | |
# This extractor must use the fine-tuned model for features, as per your training logic | |
PROTT5_EXTRACTOR = FeatureProtT5Model( | |
model_path=PROTT5_BASE_MODEL_PATH, | |
finetuned_model_file=FINETUNED_PROTT5_FOR_FEATURES_PATH | |
) | |
print("✅ ProtT5 Feature Extractor loaded.") | |
# --- Load Generator Model --- | |
print("Loading Generator Model...") | |
GENERATOR_MODEL = ProtT5Generator( | |
vocab_size=VOCAB_SIZE, embed_dim=512, num_layers=6, num_heads=8, dropout=0.1 | |
) | |
GENERATOR_MODEL.load_state_dict(torch.load(GENERATOR_CHECKPOINT_PATH, map_location=DEVICE)) | |
GENERATOR_MODEL.to(DEVICE) | |
GENERATOR_MODEL.eval() | |
print("✅ Generator model loaded.") | |
print("\n--- All models loaded successfully! Gradio app is ready. ---\n") | |
except Exception as e: | |
print(f"💥 FATAL ERROR: Failed to load a model or dependency file: {e}") | |
raise gr.Error(f"Model or dependency loading failed! Check file paths and integrity. Error: {e}") | |
# -------------------------------------------------------------------------- | |
# SECTION 3: WRAPPER FUNCTIONS FOR GRADIO | |
# These functions connect the UI to our model's logic. | |
# -------------------------------------------------------------------------- | |
def predict_peptide_wrapper(sequence_str): | |
"""Takes a peptide sequence string and returns its predicted probability and class.""" | |
if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()): | |
return "0.0000", "Error: Please enter a valid sequence with standard amino acids." | |
try: | |
# 1. Extract features using the same logic as training/prediction scripts | |
features = extract_features(sequence_str, PROTT5_EXTRACTOR) | |
# 2. Scale features | |
scaled_features = SCALER.transform(features.reshape(1, -1)) | |
# 3. Predict with the model | |
with torch.no_grad(): | |
features_tensor = torch.tensor(scaled_features, dtype=torch.float32).to(DEVICE) | |
logits = PREDICTOR_MODEL(features_tensor) | |
probability = torch.sigmoid(logits).squeeze().item() | |
classification = "Antioxidant" if probability >= 0.5 else "Non-Antioxidant" | |
return f"{probability:.4f}", classification | |
except Exception as e: | |
print(f"Prediction error for sequence '{sequence_str}': {e}") | |
return "N/A", f"An error occurred during processing: {e}" | |
def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress(track_tqdm=True)): | |
"""Generates, validates, and clusters sequences.""" | |
num_to_generate = int(num_to_generate) | |
min_len = int(min_len) | |
max_len = int(max_len) | |
try: | |
# STEP 1: Generate an initial pool of unique sequences | |
target_pool_size = int(num_to_generate * diversity_factor) | |
unique_seqs = set() | |
progress(0, desc="Generating initial peptide pool...") | |
max_attempts = 10 | |
attempts = 0 | |
while len(unique_seqs) < target_pool_size and attempts < max_attempts: | |
batch_size = (target_pool_size - len(unique_seqs)) * 2 # Generate extra to account for duplicates/short ones | |
with torch.no_grad(): | |
generated_tokens = GENERATOR_MODEL.sample( | |
batch_size=batch_size, | |
max_length=max_len, | |
device=DEVICE, | |
temperature=temperature, | |
min_decoded_length=min_len | |
) | |
decoded = GENERATOR_MODEL.decode(generated_tokens.cpu()) | |
for seq in decoded: | |
if min_len <= len(seq) <= max_len: | |
unique_seqs.add(seq) | |
attempts += 1 | |
progress(len(unique_seqs) / target_pool_size, desc=f"Generated {len(unique_seqs)} unique sequences...") | |
candidate_seqs = list(unique_seqs) | |
if not candidate_seqs: | |
return pd.DataFrame({"Sequence": ["Failed to generate valid sequences."], "Predicted Probability": ["N/A"]}) | |
# STEP 2: Validate the generated sequences | |
validated_pool = {} | |
for seq in tqdm(candidate_seqs, desc="Validating generated sequences"): | |
prob_str, _ = predict_peptide_wrapper(seq) | |
try: | |
prob = float(prob_str) | |
if prob > 0.90: # Filter for high-quality peptides as in generator.py | |
validated_pool[seq] = prob | |
except (ValueError, TypeError): | |
continue | |
if not validated_pool: | |
return pd.DataFrame({"Sequence": ["No high-activity peptides (>0.9 prob) were generated."], "Predicted Probability": ["N/A"]}) | |
high_quality_sequences = list(validated_pool.keys()) | |
# STEP 3: Cluster to ensure diversity | |
progress(1.0, desc="Clustering for diversity...") | |
final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE) | |
# STEP 4: Format final results | |
final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs] | |
final_results.sort(key=lambda x: float(x[1]), reverse=True) | |
return pd.DataFrame(final_results, columns=["Sequence", "Predicted Probability"]) | |
except Exception as e: | |
print(f"Generation error: {e}") | |
return pd.DataFrame({"Sequence": [f"An error occurred during generation: {e}"], "Predicted Probability": ["N/A"]}) | |
# -------------------------------------------------------------------------- | |
# SECTION 4: GRADIO UI CONSTRUCTION | |
# Building the web interface. All text is in English. | |
# -------------------------------------------------------------------------- | |
with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo: | |
gr.Markdown("# RLAnOxPeptide: Intelligent Peptide Design and Prediction Platform") | |
gr.Markdown("An integrated framework combining reinforcement learning and a Transformer model for the efficient prediction and innovative design of antioxidant peptides.") | |
with gr.Tabs(): | |
with gr.TabItem("Peptide Activity Predictor"): | |
gr.Markdown("### Enter an amino acid sequence to predict its antioxidant activity.") | |
with gr.Row(): | |
peptide_input = gr.Textbox(label="Peptide Sequence", placeholder="e.g., WHYHDYKY", scale=3) | |
predict_button = gr.Button("Predict", variant="primary", scale=1) | |
with gr.Row(): | |
probability_output = gr.Textbox(label="Predicted Probability") | |
class_output = gr.Textbox(label="Predicted Class") | |
predict_button.click( | |
fn=predict_peptide_wrapper, | |
inputs=peptide_input, | |
outputs=[probability_output, class_output] | |
) | |
gr.Examples( | |
examples=[["WHYHDYKY"], ["YPGG"], ["LVLHEHGGN"], ["INVALIDSEQUENCE"]], | |
inputs=peptide_input, | |
outputs=[probability_output, class_output], | |
fn=predict_peptide_wrapper, | |
cache_examples=False, | |
) | |
with gr.TabItem("Novel Sequence Generator"): | |
gr.Markdown("### Set parameters to generate novel, high-activity antioxidant peptides.") | |
with gr.Column(): | |
with gr.Row(): | |
num_input = gr.Slider(minimum=1, maximum=50, value=10, step=1, label="Number of Final Peptides to Generate") | |
min_len_input = gr.Slider(minimum=2, maximum=10, value=3, step=1, label="Minimum Length") | |
max_len_input = gr.Slider(minimum=10, maximum=20, value=20, step=1, label="Maximum Length") | |
with gr.Row(): | |
temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)") | |
diversity_input = gr.Slider(minimum=1.0, maximum=3.0, value=1.2, step=0.1, label="Diversity Factor (Higher = Larger initial pool for clustering)") | |
generate_button = gr.Button("Generate Peptides", variant="primary") | |
results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides", wrap=True) | |
generate_button.click( | |
fn=generate_peptide_wrapper, | |
inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input], | |
outputs=results_output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |