Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,7 @@
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
# app.py - RLAnOxPeptide Gradio Web Application
|
5 |
-
#
|
6 |
-
# into a single, self-contained file for a Hugging Face Space.
|
7 |
-
#
|
8 |
-
# REQUIRED FILE STRUCTURE IN HUGGING FACE REPO:
|
9 |
-
# .
|
10 |
-
# βββ app.py (This file)
|
11 |
-
# βββ feature_extract.py (CRITICAL: This file with your `extract_features` function MUST be present)
|
12 |
-
# βββ checkpoints/
|
13 |
-
# β βββ final_rl_model_logitp0.1_calibrated_FINETUNED_PROTT5.pth
|
14 |
-
# β βββ scaler_FINETUNED_PROTT5.pkl
|
15 |
-
# βββ generator_checkpoints_v3.6/
|
16 |
-
# β βββ final_generator_model.pth
|
17 |
-
# βββ prott5/
|
18 |
-
# β βββ model/
|
19 |
-
# β βββ finetuned_prott5.bin (Your fine-tuned feature extractor weights)
|
20 |
-
# βββ requirements.txt
|
21 |
|
22 |
import os
|
23 |
import torch
|
@@ -29,15 +14,16 @@ import gradio as gr
|
|
29 |
from sklearn.cluster import KMeans
|
30 |
from tqdm import tqdm
|
31 |
import transformers
|
|
|
32 |
|
33 |
-
# Suppress verbose logging from transformers
|
34 |
transformers.logging.set_verbosity_error()
|
35 |
|
36 |
# --------------------------------------------------------------------------
|
37 |
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
|
38 |
# --------------------------------------------------------------------------
|
39 |
|
40 |
-
# --- Vocabulary Definition
|
41 |
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
|
42 |
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
|
43 |
token2id["<PAD>"] = 0
|
@@ -47,19 +33,15 @@ VOCAB_SIZE = len(token2id)
|
|
47 |
|
48 |
|
49 |
# --- Feature Extractor Model Class (For ProtT5) ---
|
50 |
-
# MODIFIED: This class now loads the base model from the Hugging Face Hub ID
|
51 |
-
# and then applies your local fine-tuned weights.
|
52 |
class FeatureProtT5Model:
|
53 |
def __init__(self, base_model_id, finetuned_weights_path=None):
|
54 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
55 |
print(f"Initializing ProtT5 for feature extraction on device: {self.device}")
|
56 |
|
57 |
-
# Load the base model architecture and tokenizer directly from the Hub ID.
|
58 |
print(f"Loading base model and tokenizer from '{base_model_id}'...")
|
59 |
self.tokenizer = transformers.T5Tokenizer.from_pretrained(base_model_id, do_lower_case=False)
|
60 |
self.model = transformers.T5EncoderModel.from_pretrained(base_model_id)
|
61 |
|
62 |
-
# If a path to a fine-tuned weights file is provided, load and apply those weights.
|
63 |
if finetuned_weights_path and os.path.exists(finetuned_weights_path):
|
64 |
print(f"Applying local fine-tuned weights from: {finetuned_weights_path}")
|
65 |
state_dict = torch.load(finetuned_weights_path, map_location=self.device)
|
@@ -71,46 +53,28 @@ class FeatureProtT5Model:
|
|
71 |
self.model.to(self.device)
|
72 |
self.model.eval()
|
73 |
|
74 |
-
# β
NEWLY ADDED METHOD: This provides the functionality to encode sequences.
|
75 |
def encode(self, sequence):
|
76 |
-
"""
|
77 |
-
Takes a peptide sequence string and returns its ProtT5 embedding.
|
78 |
-
"""
|
79 |
-
# The extract_features function expects this method to exist.
|
80 |
if not sequence or not isinstance(sequence, str):
|
81 |
-
# Return a zero vector of the correct shape if input is invalid
|
82 |
return np.zeros((1, 1024), dtype=np.float32)
|
83 |
|
84 |
-
# ProtT5 expects amino acids to be separated by spaces.
|
85 |
seq_spaced = " ".join(list(sequence))
|
86 |
-
|
87 |
-
# Tokenize the input sequence.
|
88 |
encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True)
|
89 |
encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}
|
90 |
-
|
91 |
-
# Get embeddings from the model.
|
92 |
with torch.no_grad():
|
93 |
embedding = self.model(**encoded_input).last_hidden_state
|
94 |
|
95 |
-
# Move the embedding to CPU and convert to a NumPy array.
|
96 |
-
# Squeeze to remove the batch dimension.
|
97 |
emb_np = embedding.squeeze(0).cpu().numpy()
|
98 |
-
|
99 |
-
# Handle cases where the embedding might be empty.
|
100 |
return emb_np if emb_np.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
# --- Predictor Model Architecture ---
|
105 |
-
# This is the antioxidant activity predictor model. Its architecture must
|
106 |
-
# exactly match the architecture used to save the checkpoint file.
|
107 |
class AntioxidantPredictor(nn.Module):
|
108 |
def __init__(self, input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
|
109 |
super(AntioxidantPredictor, self).__init__()
|
110 |
self.prott5_dim = 1024
|
111 |
self.handcrafted_dim = input_dim - self.prott5_dim
|
112 |
self.seq_len = 16
|
113 |
-
self.prott5_feature_dim = 64
|
114 |
|
115 |
encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True)
|
116 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
|
@@ -122,26 +86,20 @@ class AntioxidantPredictor(nn.Module):
|
|
122 |
|
123 |
def forward(self, x):
|
124 |
batch_size = x.size(0)
|
125 |
-
# The input 'x' is a flat 1914-dim vector from extract_features()
|
126 |
prot_t5_features = x[:, :self.prott5_dim]
|
127 |
handcrafted_features = x[:, self.prott5_dim:]
|
128 |
-
|
129 |
-
# Reshape the first 1024 features back into a sequence representation
|
130 |
prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
|
131 |
-
|
132 |
encoded_seq = self.transformer_encoder(prot_t5_seq)
|
133 |
refined_prott5 = encoded_seq.mean(dim=1)
|
134 |
-
|
135 |
fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
|
136 |
fused_output = self.fusion_fc(fused_features)
|
137 |
logits = self.classifier(fused_output)
|
138 |
-
|
139 |
return logits / self.temperature
|
140 |
|
141 |
def get_temperature(self):
|
142 |
return self.temperature.item()
|
143 |
|
144 |
-
# --- Generator Model Architecture
|
145 |
class ProtT5Generator(nn.Module):
|
146 |
def __init__(self, vocab_size, embed_dim=512, num_layers=6, num_heads=8, dropout=0.1):
|
147 |
super(ProtT5Generator, self).__init__()
|
@@ -167,7 +125,6 @@ class ProtT5Generator(nn.Module):
|
|
167 |
next_logits = logits[:, -1, :] / temperature
|
168 |
if generated.size(1) < min_decoded_length:
|
169 |
next_logits[:, self.eos_token_id] = -float("inf")
|
170 |
-
|
171 |
probs = torch.softmax(next_logits, dim=-1)
|
172 |
next_token = torch.multinomial(probs, num_samples=1)
|
173 |
generated = torch.cat((generated, next_token), dim=1)
|
@@ -177,7 +134,7 @@ class ProtT5Generator(nn.Module):
|
|
177 |
sequences = []
|
178 |
for ids_tensor in token_ids_batch:
|
179 |
seq = ""
|
180 |
-
for token_id in ids_tensor.tolist()[1:]:
|
181 |
if token_id == self.eos_token_id: break
|
182 |
if token_id == self.pad_token_id: continue
|
183 |
seq += id2token.get(token_id, "")
|
@@ -185,15 +142,12 @@ class ProtT5Generator(nn.Module):
|
|
185 |
return sequences
|
186 |
|
187 |
# --- CRITICAL DEPENDENCY: feature_extract.py ---
|
188 |
-
# This application requires a function named `extract_features` to convert a peptide
|
189 |
-
# sequence into a 1914-dimensional feature vector for the prediction model.
|
190 |
-
# This function must be defined in a file named `feature_extract.py` in the repository root.
|
191 |
try:
|
192 |
from feature_extract import extract_features
|
193 |
except ImportError:
|
194 |
-
raise gr.Error("Fatal Error: `feature_extract.py` not found. This file is required
|
195 |
|
196 |
-
# --- Clustering Logic
|
197 |
def cluster_sequences(generator, sequences, num_clusters, device):
|
198 |
if not sequences or len(sequences) < num_clusters:
|
199 |
return sequences[:num_clusters]
|
@@ -203,7 +157,7 @@ def cluster_sequences(generator, sequences, num_clusters, device):
|
|
203 |
max_len = max((len(seq) for seq in sequences), default=0) + 2
|
204 |
for seq in sequences:
|
205 |
ids = [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id]
|
206 |
-
ids = [np.random.randint(2, VOCAB_SIZE)] + ids
|
207 |
ids += [token2id["<PAD>"]] * (max_len - len(ids))
|
208 |
token_ids_list.append(ids)
|
209 |
|
@@ -233,12 +187,10 @@ print("--- Starting Application: Loading all models and dependencies ---")
|
|
233 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
234 |
|
235 |
try:
|
236 |
-
# --- Define file paths
|
237 |
PREDICTOR_CHECKPOINT_PATH = "checkpoints/final_rl_model_logitp0.1_calibrated_FINETUNED_PROTT5.pth"
|
238 |
SCALER_PATH = "checkpoints/scaler_FINETUNED_PROTT5.pkl"
|
239 |
GENERATOR_CHECKPOINT_PATH = "generator_checkpoints_v3.6/final_generator_model.pth"
|
240 |
-
|
241 |
-
# Define the base model ID from the Hub and the path to your local fine-tuned weights.
|
242 |
PROTT5_BASE_MODEL_ID = "Rostlab/prot_t5_xl_uniref50"
|
243 |
FINETUNED_PROTT5_FOR_FEATURES_PATH = "prott5/model/finetuned_prott5.bin"
|
244 |
|
@@ -254,7 +206,6 @@ try:
|
|
254 |
print(f"Loading Scaler from: {SCALER_PATH}")
|
255 |
SCALER = joblib.load(SCALER_PATH)
|
256 |
print("Loading ProtT5 Feature Extractor...")
|
257 |
-
# Pass the Hub ID to the updated class to load the base model.
|
258 |
PROTT5_EXTRACTOR = FeatureProtT5Model(
|
259 |
base_model_id=PROTT5_BASE_MODEL_ID,
|
260 |
finetuned_weights_path=FINETUNED_PROTT5_FOR_FEATURES_PATH
|
@@ -280,16 +231,11 @@ except Exception as e:
|
|
280 |
# --------------------------------------------------------------------------
|
281 |
|
282 |
def predict_peptide_wrapper(sequence_str):
|
283 |
-
"""Handles the prediction for a single peptide sequence from the UI."""
|
284 |
if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()):
|
285 |
return "0.0000", "Error: Please enter a valid peptide sequence using standard amino acids (ACDEFGHIKLMNPQRSTVWY)."
|
286 |
|
287 |
try:
|
288 |
-
# Use the imported extract_features function.
|
289 |
-
# The L_fixed and d_model_pe values are taken from your original predictor.py arguments.
|
290 |
features = extract_features(sequence_str.upper(), PROTT5_EXTRACTOR, L_fixed=29, d_model_pe=16)
|
291 |
-
|
292 |
-
# Scale the features using the loaded scaler
|
293 |
scaled_features = SCALER.transform(features.reshape(1, -1))
|
294 |
|
295 |
with torch.no_grad():
|
@@ -304,57 +250,74 @@ def predict_peptide_wrapper(sequence_str):
|
|
304 |
print(f"Prediction Error for sequence '{sequence_str}': {e}")
|
305 |
return "N/A", f"An error occurred during prediction: {e}"
|
306 |
|
307 |
-
def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress(
|
308 |
-
"""
|
|
|
|
|
|
|
309 |
num_to_generate = int(num_to_generate)
|
310 |
min_len = int(min_len)
|
311 |
max_len = int(max_len)
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
try:
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
while len(unique_seqs) < target_pool_size:
|
321 |
-
batch_size = max(1, (target_pool_size - len(unique_seqs)))
|
322 |
-
with torch.no_grad():
|
323 |
-
generated_tokens = GENERATOR_MODEL.sample(
|
324 |
-
batch_size=batch_size, max_length=max_len, device=DEVICE,
|
325 |
-
temperature=temperature, min_decoded_length=min_len
|
326 |
-
)
|
327 |
-
decoded_sequences = GENERATOR_MODEL.decode(generated_tokens)
|
328 |
-
|
329 |
-
initial_count = len(unique_seqs)
|
330 |
-
for seq in decoded_sequences:
|
331 |
-
if min_len <= len(seq) <= max_len:
|
332 |
-
unique_seqs.add(seq)
|
333 |
-
pbar.update(len(unique_seqs) - initial_count)
|
334 |
-
|
335 |
-
candidate_seqs = list(unique_seqs)
|
336 |
-
|
337 |
-
# Step 2: Validate the generated sequences and filter for high probability
|
338 |
-
validated_pool = {}
|
339 |
-
for seq in tqdm(candidate_seqs, desc="Step 2/3: Validating generated sequences"):
|
340 |
-
prob_str, _ = predict_peptide_wrapper(seq)
|
341 |
-
try:
|
342 |
-
prob = float(prob_str)
|
343 |
-
if prob > 0.90:
|
344 |
-
validated_pool[seq] = prob
|
345 |
-
except (ValueError, TypeError):
|
346 |
-
continue
|
347 |
|
348 |
if not validated_pool:
|
349 |
-
return pd.DataFrame([{"Sequence": "
|
350 |
|
|
|
351 |
high_quality_sequences = list(validated_pool.keys())
|
352 |
|
353 |
-
#
|
354 |
-
progress(1.0, desc="Step 3/3: Clustering for diversity...")
|
355 |
final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE)
|
356 |
|
357 |
-
#
|
358 |
final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs]
|
359 |
final_results.sort(key=lambda x: float(x[1]), reverse=True)
|
360 |
|
@@ -401,8 +364,9 @@ with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo:
|
|
401 |
with gr.Column():
|
402 |
with gr.Row():
|
403 |
num_input = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Number of Final Peptides to Generate")
|
404 |
-
|
405 |
-
|
|
|
406 |
with gr.Row():
|
407 |
temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)")
|
408 |
diversity_input = gr.Slider(minimum=1.1, maximum=5.0, value=1.5, step=0.1, label="Diversity Factor (Larger initial pool for clustering)")
|
@@ -410,6 +374,15 @@ with gr.Blocks(theme=gr.themes.Soft(), title="RLAnOxPeptide") as demo:
|
|
410 |
generate_button = gr.Button("Generate Peptides", variant="primary")
|
411 |
results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides (>90% Probability)", wrap=True)
|
412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
generate_button.click(
|
414 |
fn=generate_peptide_wrapper,
|
415 |
inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input],
|
|
|
2 |
# -*- coding: utf-8 -*-
|
3 |
|
4 |
# app.py - RLAnOxPeptide Gradio Web Application
|
5 |
+
# Final version incorporating user feedback on generator logic and UI controls.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
import os
|
8 |
import torch
|
|
|
14 |
from sklearn.cluster import KMeans
|
15 |
from tqdm import tqdm
|
16 |
import transformers
|
17 |
+
import time
|
18 |
|
19 |
+
# Suppress verbose logging from transformers
|
20 |
transformers.logging.set_verbosity_error()
|
21 |
|
22 |
# --------------------------------------------------------------------------
|
23 |
# SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
|
24 |
# --------------------------------------------------------------------------
|
25 |
|
26 |
+
# --- Vocabulary Definition ---
|
27 |
AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
|
28 |
token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
|
29 |
token2id["<PAD>"] = 0
|
|
|
33 |
|
34 |
|
35 |
# --- Feature Extractor Model Class (For ProtT5) ---
|
|
|
|
|
36 |
class FeatureProtT5Model:
|
37 |
def __init__(self, base_model_id, finetuned_weights_path=None):
|
38 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
print(f"Initializing ProtT5 for feature extraction on device: {self.device}")
|
40 |
|
|
|
41 |
print(f"Loading base model and tokenizer from '{base_model_id}'...")
|
42 |
self.tokenizer = transformers.T5Tokenizer.from_pretrained(base_model_id, do_lower_case=False)
|
43 |
self.model = transformers.T5EncoderModel.from_pretrained(base_model_id)
|
44 |
|
|
|
45 |
if finetuned_weights_path and os.path.exists(finetuned_weights_path):
|
46 |
print(f"Applying local fine-tuned weights from: {finetuned_weights_path}")
|
47 |
state_dict = torch.load(finetuned_weights_path, map_location=self.device)
|
|
|
53 |
self.model.to(self.device)
|
54 |
self.model.eval()
|
55 |
|
|
|
56 |
def encode(self, sequence):
|
|
|
|
|
|
|
|
|
57 |
if not sequence or not isinstance(sequence, str):
|
|
|
58 |
return np.zeros((1, 1024), dtype=np.float32)
|
59 |
|
|
|
60 |
seq_spaced = " ".join(list(sequence))
|
|
|
|
|
61 |
encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True)
|
62 |
encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}
|
63 |
+
|
|
|
64 |
with torch.no_grad():
|
65 |
embedding = self.model(**encoded_input).last_hidden_state
|
66 |
|
|
|
|
|
67 |
emb_np = embedding.squeeze(0).cpu().numpy()
|
|
|
|
|
68 |
return emb_np if emb_np.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32)
|
69 |
|
|
|
|
|
70 |
# --- Predictor Model Architecture ---
|
|
|
|
|
71 |
class AntioxidantPredictor(nn.Module):
|
72 |
def __init__(self, input_dim=1914, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
|
73 |
super(AntioxidantPredictor, self).__init__()
|
74 |
self.prott5_dim = 1024
|
75 |
self.handcrafted_dim = input_dim - self.prott5_dim
|
76 |
self.seq_len = 16
|
77 |
+
self.prott5_feature_dim = 64
|
78 |
|
79 |
encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=True)
|
80 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
|
|
|
86 |
|
87 |
def forward(self, x):
|
88 |
batch_size = x.size(0)
|
|
|
89 |
prot_t5_features = x[:, :self.prott5_dim]
|
90 |
handcrafted_features = x[:, self.prott5_dim:]
|
|
|
|
|
91 |
prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
|
|
|
92 |
encoded_seq = self.transformer_encoder(prot_t5_seq)
|
93 |
refined_prott5 = encoded_seq.mean(dim=1)
|
|
|
94 |
fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
|
95 |
fused_output = self.fusion_fc(fused_features)
|
96 |
logits = self.classifier(fused_output)
|
|
|
97 |
return logits / self.temperature
|
98 |
|
99 |
def get_temperature(self):
|
100 |
return self.temperature.item()
|
101 |
|
102 |
+
# --- Generator Model Architecture ---
|
103 |
class ProtT5Generator(nn.Module):
|
104 |
def __init__(self, vocab_size, embed_dim=512, num_layers=6, num_heads=8, dropout=0.1):
|
105 |
super(ProtT5Generator, self).__init__()
|
|
|
125 |
next_logits = logits[:, -1, :] / temperature
|
126 |
if generated.size(1) < min_decoded_length:
|
127 |
next_logits[:, self.eos_token_id] = -float("inf")
|
|
|
128 |
probs = torch.softmax(next_logits, dim=-1)
|
129 |
next_token = torch.multinomial(probs, num_samples=1)
|
130 |
generated = torch.cat((generated, next_token), dim=1)
|
|
|
134 |
sequences = []
|
135 |
for ids_tensor in token_ids_batch:
|
136 |
seq = ""
|
137 |
+
for token_id in ids_tensor.tolist()[1:]:
|
138 |
if token_id == self.eos_token_id: break
|
139 |
if token_id == self.pad_token_id: continue
|
140 |
seq += id2token.get(token_id, "")
|
|
|
142 |
return sequences
|
143 |
|
144 |
# --- CRITICAL DEPENDENCY: feature_extract.py ---
|
|
|
|
|
|
|
145 |
try:
|
146 |
from feature_extract import extract_features
|
147 |
except ImportError:
|
148 |
+
raise gr.Error("Fatal Error: `feature_extract.py` not found. This file is required. Please upload it to your repository.")
|
149 |
|
150 |
+
# --- Clustering Logic ---
|
151 |
def cluster_sequences(generator, sequences, num_clusters, device):
|
152 |
if not sequences or len(sequences) < num_clusters:
|
153 |
return sequences[:num_clusters]
|
|
|
157 |
max_len = max((len(seq) for seq in sequences), default=0) + 2
|
158 |
for seq in sequences:
|
159 |
ids = [token2id.get(aa, 0) for aa in seq] + [generator.eos_token_id]
|
160 |
+
ids = [np.random.randint(2, VOCAB_SIZE)] + ids
|
161 |
ids += [token2id["<PAD>"]] * (max_len - len(ids))
|
162 |
token_ids_list.append(ids)
|
163 |
|
|
|
187 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
188 |
|
189 |
try:
|
190 |
+
# --- Define file paths ---
|
191 |
PREDICTOR_CHECKPOINT_PATH = "checkpoints/final_rl_model_logitp0.1_calibrated_FINETUNED_PROTT5.pth"
|
192 |
SCALER_PATH = "checkpoints/scaler_FINETUNED_PROTT5.pkl"
|
193 |
GENERATOR_CHECKPOINT_PATH = "generator_checkpoints_v3.6/final_generator_model.pth"
|
|
|
|
|
194 |
PROTT5_BASE_MODEL_ID = "Rostlab/prot_t5_xl_uniref50"
|
195 |
FINETUNED_PROTT5_FOR_FEATURES_PATH = "prott5/model/finetuned_prott5.bin"
|
196 |
|
|
|
206 |
print(f"Loading Scaler from: {SCALER_PATH}")
|
207 |
SCALER = joblib.load(SCALER_PATH)
|
208 |
print("Loading ProtT5 Feature Extractor...")
|
|
|
209 |
PROTT5_EXTRACTOR = FeatureProtT5Model(
|
210 |
base_model_id=PROTT5_BASE_MODEL_ID,
|
211 |
finetuned_weights_path=FINETUNED_PROTT5_FOR_FEATURES_PATH
|
|
|
231 |
# --------------------------------------------------------------------------
|
232 |
|
233 |
def predict_peptide_wrapper(sequence_str):
|
|
|
234 |
if not sequence_str or not isinstance(sequence_str, str) or any(c not in AMINO_ACIDS for c in sequence_str.upper()):
|
235 |
return "0.0000", "Error: Please enter a valid peptide sequence using standard amino acids (ACDEFGHIKLMNPQRSTVWY)."
|
236 |
|
237 |
try:
|
|
|
|
|
238 |
features = extract_features(sequence_str.upper(), PROTT5_EXTRACTOR, L_fixed=29, d_model_pe=16)
|
|
|
|
|
239 |
scaled_features = SCALER.transform(features.reshape(1, -1))
|
240 |
|
241 |
with torch.no_grad():
|
|
|
250 |
print(f"Prediction Error for sequence '{sequence_str}': {e}")
|
251 |
return "N/A", f"An error occurred during prediction: {e}"
|
252 |
|
253 |
+
def generate_peptide_wrapper(num_to_generate, min_len, max_len, temperature, diversity_factor, progress=gr.Progress()):
|
254 |
+
"""
|
255 |
+
Handles the full generation-validation-clustering pipeline with a loop to ensure
|
256 |
+
the target number of peptides is generated.
|
257 |
+
"""
|
258 |
num_to_generate = int(num_to_generate)
|
259 |
min_len = int(min_len)
|
260 |
max_len = int(max_len)
|
261 |
+
|
262 |
+
# Safety check for length
|
263 |
+
if min_len > max_len:
|
264 |
+
gr.Warning("Minimum Length cannot be greater than Maximum Length. Adjusting min_len = max_len.")
|
265 |
+
min_len = max_len
|
266 |
|
267 |
try:
|
268 |
+
validated_pool = {} # Use a dictionary to store unique sequences and their probabilities
|
269 |
+
attempts = 0
|
270 |
+
max_attempts = 20 # Safety break to prevent infinite loops
|
271 |
+
generation_batch_size = 200 # Number of sequences to generate in each attempt
|
272 |
+
|
273 |
+
while len(validated_pool) < num_to_generate and attempts < max_attempts:
|
274 |
+
progress(len(validated_pool) / num_to_generate, desc=f"Found {len(validated_pool)} / {num_to_generate} peptides. (Attempt {attempts+1}/{max_attempts})")
|
275 |
+
|
276 |
+
# Generate a batch of candidate sequences
|
277 |
+
with torch.no_grad():
|
278 |
+
generated_tokens = GENERATOR_MODEL.sample(
|
279 |
+
batch_size=generation_batch_size, max_length=max_len, device=DEVICE,
|
280 |
+
temperature=temperature, min_decoded_length=min_len
|
281 |
+
)
|
282 |
+
decoded_sequences = GENERATOR_MODEL.decode(generated_tokens)
|
283 |
+
|
284 |
+
# Filter for length and uniqueness
|
285 |
+
new_candidates = []
|
286 |
+
for seq in decoded_sequences:
|
287 |
+
if min_len <= len(seq) <= max_len:
|
288 |
+
if seq not in validated_pool:
|
289 |
+
new_candidates.append(seq)
|
290 |
+
|
291 |
+
# Validate the new, unique candidates
|
292 |
+
for seq in new_candidates:
|
293 |
+
prob_str, _ = predict_peptide_wrapper(seq)
|
294 |
+
try:
|
295 |
+
prob = float(prob_str)
|
296 |
+
if prob > 0.90:
|
297 |
+
validated_pool[seq] = prob
|
298 |
+
# Check if we have reached the target
|
299 |
+
if len(validated_pool) >= num_to_generate:
|
300 |
+
break
|
301 |
+
except (ValueError, TypeError):
|
302 |
+
continue
|
303 |
+
|
304 |
+
attempts += 1
|
305 |
+
if len(validated_pool) >= num_to_generate:
|
306 |
+
break
|
307 |
|
308 |
+
progress(1.0, desc=f"Collected {len(validated_pool)} high-quality peptides. Clustering for diversity...")
|
309 |
+
time.sleep(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
if not validated_pool:
|
312 |
+
return pd.DataFrame([{"Sequence": "Could not generate any high-activity peptides (>0.9 prob) with the current settings. Try different parameters.", "Predicted Probability": "N/A"}])
|
313 |
|
314 |
+
# --- Final Processing ---
|
315 |
high_quality_sequences = list(validated_pool.keys())
|
316 |
|
317 |
+
# Cluster to ensure diversity, selecting up to the target number
|
|
|
318 |
final_diverse_seqs = cluster_sequences(GENERATOR_MODEL, high_quality_sequences, num_to_generate, DEVICE)
|
319 |
|
320 |
+
# Format final results into a DataFrame
|
321 |
final_results = [(seq, f"{validated_pool[seq]:.4f}") for seq in final_diverse_seqs]
|
322 |
final_results.sort(key=lambda x: float(x[1]), reverse=True)
|
323 |
|
|
|
364 |
with gr.Column():
|
365 |
with gr.Row():
|
366 |
num_input = gr.Slider(minimum=5, maximum=50, value=10, step=1, label="Number of Final Peptides to Generate")
|
367 |
+
# β
MODIFIED: Length sliders both have a range of 2-20
|
368 |
+
min_len_input = gr.Slider(minimum=2, maximum=20, value=3, step=1, label="Minimum Length")
|
369 |
+
max_len_input = gr.Slider(minimum=2, maximum=20, value=20, step=1, label="Maximum Length")
|
370 |
with gr.Row():
|
371 |
temp_input = gr.Slider(minimum=0.5, maximum=3.0, value=2.5, step=0.1, label="Temperature (Higher = More random)")
|
372 |
diversity_input = gr.Slider(minimum=1.1, maximum=5.0, value=1.5, step=0.1, label="Diversity Factor (Larger initial pool for clustering)")
|
|
|
374 |
generate_button = gr.Button("Generate Peptides", variant="primary")
|
375 |
results_output = gr.DataFrame(headers=["Sequence", "Predicted Probability"], label="Generated & Validated Peptides (>90% Probability)", wrap=True)
|
376 |
|
377 |
+
# β
ADDED: Dynamic linking of min and max length sliders for better UX
|
378 |
+
def update_min_len_range(max_len):
|
379 |
+
return gr.Slider(maximum=max_len)
|
380 |
+
max_len_input.change(fn=update_min_len_range, inputs=max_len_input, outputs=min_len_input)
|
381 |
+
|
382 |
+
def update_max_len_range(min_len):
|
383 |
+
return gr.Slider(minimum=min_len)
|
384 |
+
min_len_input.change(fn=update_max_len_range, inputs=min_len_input, outputs=max_len_input)
|
385 |
+
|
386 |
generate_button.click(
|
387 |
fn=generate_peptide_wrapper,
|
388 |
inputs=[num_input, min_len_input, max_len_input, temp_input, diversity_input],
|