chshan commited on
Commit
f2cec0b
·
verified ·
1 Parent(s): 897c594

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -41
app.py CHANGED
@@ -1,4 +1,5 @@
1
- # app.py - RLAnOxPeptide Gradio Web Application (FINAL CORRECTED VERSION - Synced with local scripts)
 
2
 
3
  import os
4
  import torch
@@ -10,17 +11,15 @@ import gradio as gr
10
  from sklearn.cluster import KMeans
11
  from tqdm import tqdm
12
  import transformers
13
- import argparse # We won't use argparse but might need it for compatibility if any function expects it
14
 
15
  # Suppress verbose logging from transformers
16
  transformers.logging.set_verbosity_error()
17
 
18
  # --------------------------------------------------------------------------
19
  # SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
20
- # These definitions are now synchronized with your provided, working scripts.
21
  # --------------------------------------------------------------------------
22
 
23
- # --- Vocabulary Definition (from generator.py) ---
24
  AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
25
  token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
26
  token2id["<PAD>"] = 0
@@ -28,62 +27,69 @@ token2id["<EOS>"] = 1
28
  id2token = {i: t for t, i in token2id.items()}
29
  VOCAB_SIZE = len(token2id)
30
 
31
- # --- Predictor Model Architecture (Copied VERBATIM from your antioxidant_predictor_5.py) ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  class AntioxidantPredictor(nn.Module):
33
  def __init__(self, input_dim, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
34
  super(AntioxidantPredictor, self).__init__()
35
  self.prott5_dim = 1024
36
  self.handcrafted_dim = input_dim - self.prott5_dim
37
  self.seq_len = 16
38
- self.prott5_feature_dim = 64 # 16 * 64 = 1024
39
-
40
- encoder_layer = nn.TransformerEncoderLayer(
41
- d_model=self.prott5_feature_dim,
42
- nhead=transformer_heads,
43
- dropout=transformer_dropout,
44
- batch_first=True
45
- )
46
  self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
47
-
48
  fused_dim = self.prott5_feature_dim + self.handcrafted_dim
49
- self.fusion_fc = nn.Sequential(
50
- nn.Linear(fused_dim, 1024),
51
- nn.ReLU(),
52
- nn.Dropout(0.3),
53
- nn.Linear(1024, 512),
54
- nn.ReLU(),
55
- nn.Dropout(0.3)
56
- )
57
-
58
- self.classifier = nn.Sequential(
59
- nn.Linear(512, 256),
60
- nn.ReLU(),
61
- nn.Dropout(0.3),
62
- nn.Linear(256, 1)
63
- )
64
  self.temperature = nn.Parameter(torch.ones(1), requires_grad=False)
65
-
66
  def forward(self, x, *args):
67
  batch_size = x.size(0)
68
  prot_t5_features = x[:, :self.prott5_dim]
69
  handcrafted_features = x[:, self.prott5_dim:]
70
-
71
  prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
72
  encoded_seq = self.transformer_encoder(prot_t5_seq)
73
  refined_prott5 = encoded_seq.mean(dim=1)
74
-
75
  fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
76
  fused_features = self.fusion_fc(fused_features)
77
-
78
  logits = self.classifier(fused_features)
79
- logits_scaled = logits / self.temperature
80
- return logits_scaled
81
-
82
- def set_temperature(self, temp_value, device):
83
- self.temperature = nn.Parameter(torch.tensor([temp_value], device=device), requires_grad=False)
84
-
85
- def get_temperature(self):
86
- return self.temperature.item()
87
 
88
  # --- Generator Model Architecture (Copied VERBATIM from your generator.py) ---
89
  class ProtT5Generator(nn.Module):
 
1
+
2
+ # app.py - RLAnOxPeptide Gradio Web Application (FINAL CORRECTED VERSION - Robust Loading)
3
 
4
  import os
5
  import torch
 
11
  from sklearn.cluster import KMeans
12
  from tqdm import tqdm
13
  import transformers
 
14
 
15
  # Suppress verbose logging from transformers
16
  transformers.logging.set_verbosity_error()
17
 
18
  # --------------------------------------------------------------------------
19
  # SECTION 1: CORE CLASS AND FUNCTION DEFINITIONS
 
20
  # --------------------------------------------------------------------------
21
 
22
+ # --- Vocabulary Definition ---
23
  AMINO_ACIDS = "ACDEFGHIKLMNPQRSTVWY"
24
  token2id = {aa: i + 2 for i, aa in enumerate(AMINO_ACIDS)}
25
  token2id["<PAD>"] = 0
 
27
  id2token = {i: t for t, i in token2id.items()}
28
  VOCAB_SIZE = len(token2id)
29
 
30
+ # --- ROBUST FeatureProtT5Model Class for Feature Extraction ---
31
+ class FeatureProtT5Model:
32
+ def __init__(self, model_dir_path, finetuned_weights_path=None):
33
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
34
+ print(f"Initializing ProtT5 from base directory: {model_dir_path}")
35
+
36
+ # Step 1: Load the base model architecture and tokenizer from the directory.
37
+ # This step requires the original pytorch_model.bin to be in the model_dir_path.
38
+ self.tokenizer = transformers.T5Tokenizer.from_pretrained(model_dir_path, do_lower_case=False)
39
+ self.model = transformers.T5EncoderModel.from_pretrained(model_dir_path)
40
+
41
+ # Step 2: If a separate fine-tuned weights file is provided, load it.
42
+ if finetuned_weights_path and os.path.exists(finetuned_weights_path):
43
+ print(f"Loading and applying fine-tuned weights from: {finetuned_weights_path}")
44
+ # Load the state_dict from your specific fine-tuned file
45
+ state_dict = torch.load(finetuned_weights_path, map_location=self.device)
46
+ # Use strict=False because the fine-tuned model may only contain encoder weights
47
+ self.model.load_state_dict(state_dict, strict=False)
48
+ print("Successfully applied fine-tuned weights to the model.")
49
+ else:
50
+ print("Warning: Fine-tuned weights file not provided or not found. Using the base ProtT5 model weights.")
51
+
52
+ self.model.to(self.device)
53
+ self.model.eval()
54
+
55
+ def encode(self, sequence):
56
+ if not sequence or not isinstance(sequence, str):
57
+ return np.zeros((1, 1024), dtype=np.float32)
58
+ seq_spaced = " ".join(list(sequence))
59
+ encoded_input = self.tokenizer(seq_spaced, return_tensors='pt', padding=True, truncation=True, max_length=1022)
60
+ encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}
61
+ with torch.no_grad():
62
+ embedding = self.model(**encoded_input).last_hidden_state
63
+ emb = embedding.squeeze(0).cpu().numpy()
64
+ return emb if emb.shape[0] > 0 else np.zeros((1, 1024), dtype=np.float32)
65
+
66
+ # --- Predictor Model Architecture ---
67
  class AntioxidantPredictor(nn.Module):
68
  def __init__(self, input_dim, transformer_layers=3, transformer_heads=4, transformer_dropout=0.1):
69
  super(AntioxidantPredictor, self).__init__()
70
  self.prott5_dim = 1024
71
  self.handcrafted_dim = input_dim - self.prott5_dim
72
  self.seq_len = 16
73
+ self.prott5_feature_dim = 64
74
+ encoder_layer = nn.TransformerEncoderLayer(d_model=self.prott5_feature_dim, nhead=transformer_heads, dropout=transformer_dropout, batch_first=.T.rue)
 
 
 
 
 
 
75
  self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=transformer_layers)
 
76
  fused_dim = self.prott5_feature_dim + self.handcrafted_dim
77
+ self.fusion_fc = nn.Sequential(nn.Linear(fused_dim, 1024), nn.ReLU(), nn.Dropout(0.3), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.3))
78
+ self.classifier = nn.Sequential(nn.Linear(512, 256), nn.ReLU(), nn.Dropout(0.3), nn.Linear(256, 1))
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  self.temperature = nn.Parameter(torch.ones(1), requires_grad=False)
 
80
  def forward(self, x, *args):
81
  batch_size = x.size(0)
82
  prot_t5_features = x[:, :self.prott5_dim]
83
  handcrafted_features = x[:, self.prott5_dim:]
 
84
  prot_t5_seq = prot_t5_features.view(batch_size, self.seq_len, self.prott5_feature_dim)
85
  encoded_seq = self.transformer_encoder(prot_t5_seq)
86
  refined_prott5 = encoded_seq.mean(dim=1)
 
87
  fused_features = torch.cat([refined_prott5, handcrafted_features], dim=1)
88
  fused_features = self.fusion_fc(fused_features)
 
89
  logits = self.classifier(fused_features)
90
+ return logits / self.temperature
91
+ def set_temperature(self, temp_value, device): self.temperature = nn.Parameter(torch.tensor([temp_value], device=device), requires_grad=False)
92
+ def get_temperature(self): return self.temperature.item()
 
 
 
 
 
93
 
94
  # --- Generator Model Architecture (Copied VERBATIM from your generator.py) ---
95
  class ProtT5Generator(nn.Module):