Spaces:
Runtime error
Runtime error
okoliechykwuka
commited on
Commit
·
c6aa3ff
1
Parent(s):
d7ee606
Add application file
Browse files- Dockerfile +16 -0
- README copy.md +10 -0
- RFPAgent.py +188 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
7 |
+
RUN python3 -m pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["panel", "serve", "/code/RFPAgent.py", "--address", "0.0.0.0", "--port", "7860", "--allow-websocket-origin", "chukypedro-panel-doc-agent-qa.hf.space", "--allow-websocket-origin", "0.0.0.0:7860"]
|
12 |
+
|
13 |
+
RUN mkdir /.cache
|
14 |
+
RUN chmod 777 /.cache
|
15 |
+
RUN mkdir .chroma
|
16 |
+
RUN chmod 777 .chroma
|
README copy.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Panel Agent Document QA
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: red
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
RFPAgent.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
4 |
+
from langchain.llms import OpenAI
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, BSHTMLLoader, UnstructuredImageLoader
|
7 |
+
# Import things that are needed generically
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.agents import initialize_agent, Tool
|
10 |
+
from langchain.agents import AgentType
|
11 |
+
from langchain import LLMMathChain
|
12 |
+
#setting a memory for conversations
|
13 |
+
import panel as pn
|
14 |
+
import os
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
+
memory = ConversationBufferMemory(memory_key="chat_history")
|
18 |
+
|
19 |
+
|
20 |
+
def qa_agent(file, query, chain_type, k):
|
21 |
+
"""_summary_
|
22 |
+
|
23 |
+
Args:
|
24 |
+
file (_type_): _description_
|
25 |
+
query (_type_): _description_
|
26 |
+
chain_type (_type_): _description_
|
27 |
+
k (_type_): _description_
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
_type_: _description_
|
31 |
+
"""
|
32 |
+
llm = OpenAI(temperature=0)
|
33 |
+
llm_math_chain = LLMMathChain(llm=OpenAI(temperature=0))
|
34 |
+
|
35 |
+
# load document
|
36 |
+
if file.endswith('pdf'):
|
37 |
+
loader = PyPDFLoader(file)
|
38 |
+
elif file.endswith('docx'):
|
39 |
+
loader = Docx2txtLoader(file)
|
40 |
+
elif file.endswith('jpg') or file.endswith('jpg'):
|
41 |
+
loader = UnstructuredImageLoader(file, mode="elements")
|
42 |
+
else:
|
43 |
+
raise ValueError
|
44 |
+
|
45 |
+
documents = loader.load()
|
46 |
+
# split the documents into chunks
|
47 |
+
text_splitter = CharacterTextSplitter(chunk_size=3228, chunk_overlap=0)
|
48 |
+
texts = text_splitter.split_documents(documents)
|
49 |
+
# select which embeddings we want to use
|
50 |
+
embeddings = OpenAIEmbeddings()
|
51 |
+
|
52 |
+
# create the vectorestore to use as the index
|
53 |
+
db = Chroma.from_documents(texts, embeddings)
|
54 |
+
# expose this index in a retriever interface
|
55 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
56 |
+
# create a chain to answer questions
|
57 |
+
qa = RetrievalQA.from_chain_type(
|
58 |
+
llm=llm, chain_type=chain_type, retriever=retriever)
|
59 |
+
|
60 |
+
'--------------------------------- CREATE AGENT ---------------------------------'
|
61 |
+
tools = [
|
62 |
+
Tool(
|
63 |
+
name = "Demo",
|
64 |
+
func=qa.run,
|
65 |
+
description="use this as the primary source of context information when you are asked the question. \
|
66 |
+
Always search for the answers using only the provided tool, don't make up answers yourself"
|
67 |
+
|
68 |
+
),
|
69 |
+
|
70 |
+
Tool(
|
71 |
+
name="Calculator",
|
72 |
+
func=llm_math_chain.run,
|
73 |
+
description="Useful for answering math-related questions within the given document. Avoid speculating beyond the document's content. If you don't know the answer to a question, simply state 'I don't know'.",
|
74 |
+
return_direct=True #return tool directly to the user
|
75 |
+
)
|
76 |
+
|
77 |
+
]
|
78 |
+
# Construct the agent. We will use the default agent type here.
|
79 |
+
# See documentation for a full list of options.
|
80 |
+
|
81 |
+
agent = initialize_agent(
|
82 |
+
tools,
|
83 |
+
agent= AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
84 |
+
llm=llm,
|
85 |
+
memory=memory,
|
86 |
+
verbose=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
result = agent.run(input = query)
|
90 |
+
|
91 |
+
return result
|
92 |
+
|
93 |
+
#'Explain what the proposed Approach in this Paper is all about'
|
94 |
+
|
95 |
+
'------------------------------ Panel App ---------------------------------'
|
96 |
+
|
97 |
+
pn.extension('texteditor', template="bootstrap", sizing_mode='stretch_width',theme='dark' )
|
98 |
+
pn.state.template.param.update(
|
99 |
+
main_max_width="690px",
|
100 |
+
header_background="blue",
|
101 |
+
title='DocumentAgent Application'
|
102 |
+
)
|
103 |
+
|
104 |
+
#######Widget###########
|
105 |
+
file_input = pn.widgets.FileInput(width=300)
|
106 |
+
openaikey = pn.widgets.PasswordInput(
|
107 |
+
value="", placeholder="Enter your OpenAI API Key here...", width=300
|
108 |
+
)
|
109 |
+
prompt = pn.widgets.TextEditor(
|
110 |
+
value="", placeholder="Enter your questions here...", height=160, toolbar=False
|
111 |
+
)
|
112 |
+
run_button = pn.widgets.Button(name="Run!", margin=(25, 50), background='#f0f0f0', button_type='primary')
|
113 |
+
|
114 |
+
select_k = pn.widgets.IntSlider(
|
115 |
+
name="Number of relevant chunks", start=1, end=5, step=1, value=2
|
116 |
+
)
|
117 |
+
select_chain_type = pn.widgets.RadioButtonGroup(
|
118 |
+
name='Chain type',
|
119 |
+
options=['stuff', 'map_reduce', "refine", "map_rerank"],button_type='success'
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
widgets = pn.Row(
|
124 |
+
pn.Column(prompt, run_button, margin=5),
|
125 |
+
pn.Card(
|
126 |
+
"Chain type:",
|
127 |
+
pn.Column(select_chain_type, select_k),
|
128 |
+
title="Advanced settings", margin=10
|
129 |
+
), width=600
|
130 |
+
)
|
131 |
+
|
132 |
+
convos = [] # store all panel objects in a list
|
133 |
+
|
134 |
+
def agent_app(_):
|
135 |
+
os.environ["OPENAI_API_KEY"] = openaikey.value
|
136 |
+
|
137 |
+
# save pdf file to a temp file
|
138 |
+
if file_input.value is not None:
|
139 |
+
file_input.save(f"/.cache/{file_input.filename}")
|
140 |
+
|
141 |
+
prompt_text = prompt.value
|
142 |
+
if prompt_text:
|
143 |
+
result = qa_agent(file=f"/.cache/{file_input.filename}", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)
|
144 |
+
convos.extend([
|
145 |
+
pn.Row(
|
146 |
+
pn.panel("\U0001F60A", width=10),
|
147 |
+
prompt_text,
|
148 |
+
width=600
|
149 |
+
),
|
150 |
+
pn.Row(
|
151 |
+
pn.panel("\U0001F916", width=10),
|
152 |
+
pn.Column(
|
153 |
+
"Relevant source text:",
|
154 |
+
pn.pane.Markdown(result)
|
155 |
+
)
|
156 |
+
)
|
157 |
+
])
|
158 |
+
#return convos
|
159 |
+
return pn.Column(*convos, margin=15, width=575, min_height=400)
|
160 |
+
|
161 |
+
|
162 |
+
qa_interactive = pn.panel(
|
163 |
+
pn.bind(agent_app, run_button),
|
164 |
+
loading_indicator=True,
|
165 |
+
)
|
166 |
+
|
167 |
+
output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=630, scroll=True)
|
168 |
+
# Apply CSS styles to the WidgetBox
|
169 |
+
output.background = 'blue'
|
170 |
+
# layout
|
171 |
+
pn.Column(
|
172 |
+
pn.pane.Markdown("""
|
173 |
+
## \U0001F60A! Question Answering Agent with your Document file
|
174 |
+
|
175 |
+
1) Upload a Document in [pdf, docx, .jpg, html] format. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click "Run".
|
176 |
+
|
177 |
+
"""),
|
178 |
+
|
179 |
+
pn.Row(file_input,openaikey),
|
180 |
+
output,
|
181 |
+
widgets,
|
182 |
+
css_classes=['body']).servable()
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
panel
|
3 |
+
python-dotenv
|
4 |
+
openai
|
5 |
+
chromadb
|
6 |
+
pypdf
|
7 |
+
tiktoken
|
8 |
+
panel
|
9 |
+
unstructured
|