Spaces:
Running
on
Zero
Running
on
Zero
import random | |
from typing import List, Union, Optional, Tuple | |
import torch | |
from PIL import Image | |
import spaces | |
import gradio as gr | |
from sample import (arg_parse, | |
sampling, | |
load_fontdiffuer_pipeline) | |
from batch_sample import batch_sampling | |
def run_fontdiffuer(source_image, | |
character, | |
reference_image, | |
sampling_step, | |
guidance_scale, | |
batch_size): | |
args.character_input = False if source_image is not None else True | |
args.content_character = character | |
args.sampling_step = sampling_step | |
args.guidance_scale = guidance_scale | |
args.batch_size = batch_size | |
args.seed = random.randint(0, 10000) | |
out_image = sampling( | |
args=args, | |
pipe=pipe, | |
content_image=source_image, | |
style_image=reference_image) | |
if out_image is not None: | |
out_image.format = 'PNG' | |
return out_image | |
def _normalize_batch_inputs(source_images, characters, reference_images) -> Tuple[List, List, List, int]: | |
""" | |
Normalize different input types to consistent lists | |
Returns: | |
Tuple of (content_inputs, style_inputs, char_inputs, total_samples) | |
""" | |
content_inputs = [] | |
style_inputs = [] | |
char_inputs = [] | |
# Handle character mode | |
if source_images is None: | |
if isinstance(characters, str): | |
char_inputs = [characters] | |
elif isinstance(characters, list): | |
char_inputs = characters | |
else: | |
return [], [], [], 0 | |
# Replicate reference images to match character count | |
if isinstance(reference_images, Image.Image): | |
style_inputs = [reference_images] * len(char_inputs) | |
elif isinstance(reference_images, list): | |
if len(reference_images) == 1: | |
style_inputs = reference_images * len(char_inputs) | |
elif len(reference_images) == len(char_inputs): | |
style_inputs = reference_images | |
else: | |
# Cycle through reference images if counts don't match | |
style_inputs = [reference_images[i % len(reference_images)] for i in range(len(char_inputs))] | |
total_samples = len(char_inputs) | |
# Handle image mode | |
else: | |
if isinstance(source_images, Image.Image): | |
content_inputs = [source_images] | |
elif isinstance(source_images, list): | |
# Handle Gradio Gallery format: list of tuples (image, caption) | |
content_inputs = [] | |
for item in source_images: | |
if isinstance(item, tuple) and len(item) >= 1: | |
# Extract the image from tuple (image, caption) | |
content_inputs.append(item[0]) | |
elif isinstance(item, Image.Image): | |
# Direct image | |
content_inputs.append(item) | |
else: | |
return [], [], [], 0 | |
# Handle reference images | |
if isinstance(reference_images, Image.Image): | |
style_inputs = [reference_images] * len(content_inputs) | |
elif isinstance(reference_images, list): | |
if len(reference_images) == 1: | |
style_inputs = reference_images * len(content_inputs) | |
elif len(reference_images) == len(content_inputs): | |
style_inputs = reference_images | |
else: | |
# Cycle through reference images if counts don't match | |
style_inputs = [reference_images[i % len(reference_images)] for i in range(len(content_inputs))] | |
total_samples = len(content_inputs) | |
return content_inputs, style_inputs, char_inputs, total_samples | |
def run_fontdiffuer_batch(source_images: Union[List[Image.Image], Image.Image, None], | |
# characters: Union[List[str], str, None], | |
# reference_images: Union[List[Image.Image], Image.Image], | |
reference_image: Image.Image, | |
sampling_step: int = 50, | |
guidance_scale: float = 7.5, | |
batch_size: int = 4, | |
seed: Optional[int] = None) -> List[Image.Image]: | |
""" | |
Run FontDiffuser in batch mode | |
Args: | |
source_images: Single image, list of images, or None (for character mode) | |
characters: Single character, list of characters, or None (for image mode) | |
reference_images: Single style image or list of style images | |
sampling_step: Number of sampling steps | |
guidance_scale: Guidance scale for diffusion | |
batch_size: Batch size for processing | |
seed: Random seed (if None, generates random seed) | |
Returns: | |
List of generated images | |
""" | |
args.adaptive_batch_size = True | |
characters = None | |
reference_images = [reference_image] | |
# Normalize inputs to lists | |
content_inputs, style_inputs, char_inputs, total_samples = _normalize_batch_inputs( | |
source_images, characters, reference_images | |
) | |
if total_samples == 0: | |
return [] | |
# Set up arguments | |
args.character_input = source_images is None | |
args.sampling_step = sampling_step | |
args.guidance_scale = guidance_scale | |
args.batch_size = min(batch_size, total_samples) # Don't exceed available samples | |
args.seed = seed if seed is not None else random.randint(0, 10000) | |
print(f"Processing {total_samples} samples with batch size {args.batch_size}") | |
# Use the enhanced batch_sampling function | |
if args.character_input: | |
# Character-based generation | |
generated_images = batch_sampling( | |
args=args, | |
pipe=pipe, | |
content_inputs=content_inputs, # Empty for character mode | |
style_inputs=style_inputs, | |
content_characters=char_inputs | |
) | |
else: | |
# Image-based generation | |
generated_images = batch_sampling( | |
args=args, | |
pipe=pipe, | |
content_inputs=content_inputs, | |
style_inputs=style_inputs, | |
content_characters=None | |
) | |
# Set format for all output images | |
for img in generated_images: | |
img.format = 'PNG' | |
return generated_images | |
if __name__ == '__main__': | |
args = arg_parse() | |
args.demo = True | |
args.ckpt_dir = 'ckpt' | |
args.ttf_path = 'ttf/KaiXinSongA.ttf' | |
args.device = 'cuda' | |
args.max_batch_size = 64 | |
args.num_workers = 64 | |
args.adaptive_batch_size = True | |
# load fontdiffuer pipeline | |
pipe = load_fontdiffuer_pipeline(args=args) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.HTML(""" | |
<div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem"> | |
FontDiffuser | |
</h1> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>, | |
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>, | |
<a href="https://github.com/kyxscut"">Yuxin Kong</a>, | |
<a href="https://github.com/ZZXF11"">Yuyi Zhang</a>, | |
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>, | |
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>† | |
</h2> | |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
<strong>South China University of Technology</strong>, Alibaba DAMO Academy | |
</h2> | |
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
[<a href="https://arxiv.org/abs/2312.12142" style="color:blue;">arXiv</a>] | |
[<a href="https://yeungchenwa.github.io/fontdiffuser-homepage/" style="color:green;">Homepage</a>] | |
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>] | |
</h3> | |
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
1.We propose FontDiffuser, which is capable to generate unseen characters and styles, and it can be extended to the cross-lingual generation, such as Chinese to Korean. | |
</h2> | |
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
2. FontDiffuser excels in generating complex character and handling large style variation. And it achieves state-of-the-art performance. | |
</h2> | |
</div> | |
""") | |
gr.Image('figures/result_vis.png') | |
gr.Image('figures/demo_tips.png') | |
with gr.Column(scale=1): | |
with gr.Row(): | |
source_image = gr.Image(width=320, label='[Option 1] Source Image', image_mode='RGB', type='pil') | |
reference_image = gr.Image(width=320, label='Reference Image', image_mode='RGB', type='pil') | |
with gr.Row(): | |
character = gr.Textbox(value='隆', label='[Option 2] Source Character') | |
with gr.Row(): | |
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil', format='png') | |
sampling_step = gr.Slider(20, 50, value=20, step=10, | |
label="Sampling Step", info="The sampling step by FontDiffuser.") | |
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5, | |
label="Scale of Classifier-free Guidance", | |
info="The scale used for classifier-free guidance sampling") | |
batch_size = gr.Slider(1, 4, value=1, step=1, | |
label="Batch Size", info="The number of images to be sampled.") | |
FontDiffuser = gr.Button('Run FontDiffuser') | |
gr.Markdown("## <font color=#008000, size=6>Examples that You Can Choose Below⬇️</font>") | |
with gr.Row(): | |
gr.Markdown("## Examples") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("## Example 1️⃣: Source Image and Reference Image") | |
gr.Markdown("### In this mode, we provide both the source image and \ | |
the reference image for you to try our demo!") | |
gr.Examples( | |
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'], | |
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'], | |
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'], | |
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']], | |
inputs=[source_image, reference_image] | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("## Example 2️⃣: Character and Reference Image") | |
gr.Markdown("### In this mode, we provide the content character and the reference image \ | |
for you to try our demo!") | |
gr.Examples( | |
examples=[['龍', 'figures/ref_imgs/ref_鷢.jpg'], | |
['轉', 'figures/ref_imgs/ref_鲸.jpg'], | |
['懭', 'figures/ref_imgs/ref_籍_1.jpg'], | |
['識', 'figures/ref_imgs/ref_鞣.jpg']], | |
inputs=[character, reference_image] | |
) | |
with gr.Column(scale=1): | |
gr.Markdown("## Example 3️⃣: Reference Image") | |
gr.Markdown("### In this mode, we provide only the reference image, \ | |
you can upload your own source image or you choose the character above \ | |
to try our demo!") | |
gr.Examples( | |
examples=['figures/ref_imgs/ref_闡.jpg', | |
'figures/ref_imgs/ref_雕.jpg', | |
'figures/ref_imgs/ref_豄.jpg', | |
'figures/ref_imgs/ref_馨.jpg', | |
'figures/ref_imgs/ref_鲸.jpg', | |
'figures/ref_imgs/ref_檀.jpg', | |
'figures/ref_imgs/ref_鞣.jpg', | |
'figures/ref_imgs/ref_穗.jpg', | |
'figures/ref_imgs/ref_欟.jpg', | |
'figures/ref_imgs/ref_籍_1.jpg', | |
'figures/ref_imgs/ref_鷢.jpg', | |
'figures/ref_imgs/ref_媚.jpg', | |
'figures/ref_imgs/ref_籍.jpg', | |
'figures/ref_imgs/ref_壤.jpg', | |
'figures/ref_imgs/ref_蜓.jpg', | |
'figures/ref_imgs/ref_鹰.jpg'], | |
examples_per_page=20, | |
inputs=reference_image | |
) | |
FontDiffuser.click( | |
fn=run_fontdiffuer, | |
inputs=[source_image, | |
character, | |
reference_image, | |
sampling_step, | |
guidance_scale, | |
batch_size], | |
outputs=fontdiffuer_output_image) | |
# Batch Mode | |
gr.Markdown("## Batch Mode") | |
with gr.Row(): | |
input_images = gr.Gallery( | |
format='png', | |
file_types=['image'], | |
type='pil', | |
) | |
reference_image = gr.Image(label='Reference Image', image_mode='RGB', type='pil') | |
output_images = gr.Gallery( | |
format='png', | |
type='pil' | |
) | |
RunFontDiffuserBatch = gr.Button('Run FontDiffuser Batch Mode') | |
RunFontDiffuserBatch.click( | |
fn=run_fontdiffuer_batch, | |
inputs=[input_images, reference_image], | |
outputs=output_images | |
) | |
demo.launch(debug=True) | |