Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
fa4c65b
1
Parent(s):
1dc498e
feat: batch_sampling
Browse files- app.py +153 -21
- batch_sample.py +604 -0
app.py
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
import random
|
|
|
|
|
|
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
-
from sample import (arg_parse,
|
5 |
sampling,
|
6 |
load_fontdiffuer_pipeline)
|
7 |
|
|
|
|
|
8 |
@spaces.GPU()
|
9 |
-
def run_fontdiffuer(source_image,
|
10 |
-
character,
|
11 |
reference_image,
|
12 |
sampling_step,
|
13 |
guidance_scale,
|
@@ -23,12 +28,139 @@ def run_fontdiffuer(source_image,
|
|
23 |
pipe=pipe,
|
24 |
content_image=source_image,
|
25 |
style_image=reference_image)
|
26 |
-
|
27 |
if out_image is not None:
|
28 |
out_image.format = 'PNG'
|
29 |
-
|
30 |
return out_image
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
if __name__ == '__main__':
|
34 |
args = arg_parse()
|
@@ -49,18 +181,18 @@ if __name__ == '__main__':
|
|
49 |
FontDiffuser
|
50 |
</h1>
|
51 |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
52 |
-
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
|
53 |
-
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
|
54 |
-
<a href="https://github.com/kyxscut"">Yuxin Kong</a>,
|
55 |
-
<a href="https://github.com/ZZXF11"">Yuyi Zhang</a>,
|
56 |
-
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
|
57 |
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
|
58 |
</h2>
|
59 |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
60 |
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
|
61 |
</h2>
|
62 |
-
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
63 |
-
[<a href="https://arxiv.org/abs/2312.12142" style="color:blue;">arXiv</a>]
|
64 |
[<a href="https://yeungchenwa.github.io/fontdiffuser-homepage/" style="color:green;">Homepage</a>]
|
65 |
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
|
66 |
</h3>
|
@@ -83,12 +215,12 @@ if __name__ == '__main__':
|
|
83 |
with gr.Row():
|
84 |
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil', format='png')
|
85 |
|
86 |
-
sampling_step = gr.Slider(20, 50, value=20, step=10,
|
87 |
label="Sampling Step", info="The sampling step by FontDiffuser.")
|
88 |
-
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
|
89 |
-
label="Scale of Classifier-free Guidance",
|
90 |
info="The scale used for classifier-free guidance sampling")
|
91 |
-
batch_size = gr.Slider(1, 4, value=1, step=1,
|
92 |
label="Batch Size", info="The number of images to be sampled.")
|
93 |
|
94 |
FontDiffuser = gr.Button('Run FontDiffuser')
|
@@ -101,7 +233,7 @@ if __name__ == '__main__':
|
|
101 |
gr.Markdown("### In this mode, we provide both the source image and \
|
102 |
the reference image for you to try our demo!")
|
103 |
gr.Examples(
|
104 |
-
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
|
105 |
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
|
106 |
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
|
107 |
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
|
@@ -124,7 +256,7 @@ if __name__ == '__main__':
|
|
124 |
you can upload your own source image or you choose the character above \
|
125 |
to try our demo!")
|
126 |
gr.Examples(
|
127 |
-
examples=['figures/ref_imgs/ref_闡.jpg',
|
128 |
'figures/ref_imgs/ref_雕.jpg',
|
129 |
'figures/ref_imgs/ref_豄.jpg',
|
130 |
'figures/ref_imgs/ref_馨.jpg',
|
@@ -145,11 +277,11 @@ if __name__ == '__main__':
|
|
145 |
)
|
146 |
FontDiffuser.click(
|
147 |
fn=run_fontdiffuer,
|
148 |
-
inputs=[source_image,
|
149 |
-
character,
|
150 |
reference_image,
|
151 |
sampling_step,
|
152 |
guidance_scale,
|
153 |
batch_size],
|
154 |
outputs=fontdiffuer_output_image)
|
155 |
-
demo.launch(debug=True)
|
|
|
1 |
import random
|
2 |
+
from typing import List, Union, Optional, Tuple
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
import spaces
|
6 |
import gradio as gr
|
7 |
+
from sample import (arg_parse,
|
8 |
sampling,
|
9 |
load_fontdiffuer_pipeline)
|
10 |
|
11 |
+
from batch_sample import batch_sampling
|
12 |
+
|
13 |
@spaces.GPU()
|
14 |
+
def run_fontdiffuer(source_image,
|
15 |
+
character,
|
16 |
reference_image,
|
17 |
sampling_step,
|
18 |
guidance_scale,
|
|
|
28 |
pipe=pipe,
|
29 |
content_image=source_image,
|
30 |
style_image=reference_image)
|
31 |
+
|
32 |
if out_image is not None:
|
33 |
out_image.format = 'PNG'
|
34 |
+
|
35 |
return out_image
|
36 |
|
37 |
+
def _normalize_batch_inputs(source_images, characters, reference_images) -> Tuple[List, List, List, int]:
|
38 |
+
"""
|
39 |
+
Normalize different input types to consistent lists
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
Tuple of (content_inputs, style_inputs, char_inputs, total_samples)
|
43 |
+
"""
|
44 |
+
content_inputs = []
|
45 |
+
style_inputs = []
|
46 |
+
char_inputs = []
|
47 |
+
|
48 |
+
# Handle character mode
|
49 |
+
if source_images is None:
|
50 |
+
if isinstance(characters, str):
|
51 |
+
char_inputs = [characters]
|
52 |
+
elif isinstance(characters, list):
|
53 |
+
char_inputs = characters
|
54 |
+
else:
|
55 |
+
return [], [], [], 0
|
56 |
+
|
57 |
+
# Replicate reference images to match character count
|
58 |
+
if isinstance(reference_images, Image.Image):
|
59 |
+
style_inputs = [reference_images] * len(char_inputs)
|
60 |
+
elif isinstance(reference_images, list):
|
61 |
+
if len(reference_images) == 1:
|
62 |
+
style_inputs = reference_images * len(char_inputs)
|
63 |
+
elif len(reference_images) == len(char_inputs):
|
64 |
+
style_inputs = reference_images
|
65 |
+
else:
|
66 |
+
# Cycle through reference images if counts don't match
|
67 |
+
style_inputs = [reference_images[i % len(reference_images)] for i in range(len(char_inputs))]
|
68 |
+
|
69 |
+
total_samples = len(char_inputs)
|
70 |
+
|
71 |
+
# Handle image mode
|
72 |
+
else:
|
73 |
+
if isinstance(source_images, Image.Image):
|
74 |
+
content_inputs = [source_images]
|
75 |
+
elif isinstance(source_images, list):
|
76 |
+
content_inputs = source_images
|
77 |
+
else:
|
78 |
+
return [], [], [], 0
|
79 |
+
|
80 |
+
# Handle reference images
|
81 |
+
if isinstance(reference_images, Image.Image):
|
82 |
+
style_inputs = [reference_images] * len(content_inputs)
|
83 |
+
elif isinstance(reference_images, list):
|
84 |
+
if len(reference_images) == 1:
|
85 |
+
style_inputs = reference_images * len(content_inputs)
|
86 |
+
elif len(reference_images) == len(content_inputs):
|
87 |
+
style_inputs = reference_images
|
88 |
+
else:
|
89 |
+
# Cycle through reference images if counts don't match
|
90 |
+
style_inputs = [reference_images[i % len(reference_images)] for i in range(len(content_inputs))]
|
91 |
+
|
92 |
+
total_samples = len(content_inputs)
|
93 |
+
|
94 |
+
return content_inputs, style_inputs, char_inputs, total_samples
|
95 |
+
|
96 |
+
|
97 |
+
@spaces.GPU()
|
98 |
+
def run_fontdiffuer_batch(source_images: Union[List[Image.Image], Image.Image, None],
|
99 |
+
characters: Union[List[str], str, None],
|
100 |
+
reference_images: Union[List[Image.Image], Image.Image],
|
101 |
+
sampling_step: int = 50,
|
102 |
+
guidance_scale: float = 7.5,
|
103 |
+
batch_size: int = 4,
|
104 |
+
seed: Optional[int] = None) -> List[Image.Image]:
|
105 |
+
"""
|
106 |
+
Run FontDiffuser in batch mode
|
107 |
+
|
108 |
+
Args:
|
109 |
+
source_images: Single image, list of images, or None (for character mode)
|
110 |
+
characters: Single character, list of characters, or None (for image mode)
|
111 |
+
reference_images: Single style image or list of style images
|
112 |
+
sampling_step: Number of sampling steps
|
113 |
+
guidance_scale: Guidance scale for diffusion
|
114 |
+
batch_size: Batch size for processing
|
115 |
+
seed: Random seed (if None, generates random seed)
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
List of generated images
|
119 |
+
"""
|
120 |
+
|
121 |
+
# Normalize inputs to lists
|
122 |
+
content_inputs, style_inputs, char_inputs, total_samples = _normalize_batch_inputs(
|
123 |
+
source_images, characters, reference_images
|
124 |
+
)
|
125 |
+
|
126 |
+
if total_samples == 0:
|
127 |
+
return []
|
128 |
+
|
129 |
+
# Set up arguments
|
130 |
+
args.character_input = source_images is None
|
131 |
+
args.sampling_step = sampling_step
|
132 |
+
args.guidance_scale = guidance_scale
|
133 |
+
args.batch_size = min(batch_size, total_samples) # Don't exceed available samples
|
134 |
+
args.seed = seed if seed is not None else random.randint(0, 10000)
|
135 |
+
|
136 |
+
print(f"Processing {total_samples} samples with batch size {args.batch_size}")
|
137 |
+
|
138 |
+
# Use the enhanced batch_sampling function
|
139 |
+
if args.character_input:
|
140 |
+
# Character-based generation
|
141 |
+
generated_images = batch_sampling(
|
142 |
+
args=args,
|
143 |
+
pipe=pipe,
|
144 |
+
content_inputs=content_inputs, # Empty for character mode
|
145 |
+
style_inputs=style_inputs,
|
146 |
+
content_characters=char_inputs
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
# Image-based generation
|
150 |
+
generated_images = batch_sampling(
|
151 |
+
args=args,
|
152 |
+
pipe=pipe,
|
153 |
+
content_inputs=content_inputs,
|
154 |
+
style_inputs=style_inputs,
|
155 |
+
content_characters=None
|
156 |
+
)
|
157 |
+
|
158 |
+
# Set format for all output images
|
159 |
+
for img in generated_images:
|
160 |
+
img.format = 'PNG'
|
161 |
+
|
162 |
+
return generated_images
|
163 |
+
|
164 |
|
165 |
if __name__ == '__main__':
|
166 |
args = arg_parse()
|
|
|
181 |
FontDiffuser
|
182 |
</h1>
|
183 |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
184 |
+
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
|
185 |
+
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
|
186 |
+
<a href="https://github.com/kyxscut"">Yuxin Kong</a>,
|
187 |
+
<a href="https://github.com/ZZXF11"">Yuyi Zhang</a>,
|
188 |
+
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
|
189 |
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
|
190 |
</h2>
|
191 |
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
192 |
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
|
193 |
</h2>
|
194 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
195 |
+
[<a href="https://arxiv.org/abs/2312.12142" style="color:blue;">arXiv</a>]
|
196 |
[<a href="https://yeungchenwa.github.io/fontdiffuser-homepage/" style="color:green;">Homepage</a>]
|
197 |
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
|
198 |
</h3>
|
|
|
215 |
with gr.Row():
|
216 |
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil', format='png')
|
217 |
|
218 |
+
sampling_step = gr.Slider(20, 50, value=20, step=10,
|
219 |
label="Sampling Step", info="The sampling step by FontDiffuser.")
|
220 |
+
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
|
221 |
+
label="Scale of Classifier-free Guidance",
|
222 |
info="The scale used for classifier-free guidance sampling")
|
223 |
+
batch_size = gr.Slider(1, 4, value=1, step=1,
|
224 |
label="Batch Size", info="The number of images to be sampled.")
|
225 |
|
226 |
FontDiffuser = gr.Button('Run FontDiffuser')
|
|
|
233 |
gr.Markdown("### In this mode, we provide both the source image and \
|
234 |
the reference image for you to try our demo!")
|
235 |
gr.Examples(
|
236 |
+
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
|
237 |
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
|
238 |
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
|
239 |
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
|
|
|
256 |
you can upload your own source image or you choose the character above \
|
257 |
to try our demo!")
|
258 |
gr.Examples(
|
259 |
+
examples=['figures/ref_imgs/ref_闡.jpg',
|
260 |
'figures/ref_imgs/ref_雕.jpg',
|
261 |
'figures/ref_imgs/ref_豄.jpg',
|
262 |
'figures/ref_imgs/ref_馨.jpg',
|
|
|
277 |
)
|
278 |
FontDiffuser.click(
|
279 |
fn=run_fontdiffuer,
|
280 |
+
inputs=[source_image,
|
281 |
+
character,
|
282 |
reference_image,
|
283 |
sampling_step,
|
284 |
guidance_scale,
|
285 |
batch_size],
|
286 |
outputs=fontdiffuer_output_image)
|
287 |
+
demo.launch(debug=True)
|
batch_sample.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
from PIL import Image
|
4 |
+
from typing import List, Tuple, Optional, Union
|
5 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from accelerate.utils import set_seed
|
11 |
+
|
12 |
+
from src import (
|
13 |
+
FontDiffuserDPMPipeline,
|
14 |
+
FontDiffuserModelDPM,
|
15 |
+
build_ddpm_scheduler,
|
16 |
+
build_unet,
|
17 |
+
build_content_encoder,
|
18 |
+
build_style_encoder,
|
19 |
+
)
|
20 |
+
from utils import (
|
21 |
+
ttf2im,
|
22 |
+
load_ttf,
|
23 |
+
is_char_in_font,
|
24 |
+
save_args_to_yaml,
|
25 |
+
save_single_image,
|
26 |
+
save_image_with_content_style,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
class BatchProcessor:
|
31 |
+
"""Handles batch processing logic for FontDiffuser"""
|
32 |
+
|
33 |
+
def __init__(self, args):
|
34 |
+
self.args = args
|
35 |
+
self.device = args.device
|
36 |
+
self.max_batch_size = getattr(args, "max_batch_size", 8)
|
37 |
+
self.num_workers = getattr(args, "num_workers", 4)
|
38 |
+
|
39 |
+
def batch_image_process(
|
40 |
+
self,
|
41 |
+
content_inputs: List[Union[str, Image.Image]],
|
42 |
+
style_inputs: List[Union[str, Image.Image]],
|
43 |
+
content_characters: Optional[List[str]] = None,
|
44 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[Optional[Image.Image]]]:
|
45 |
+
"""
|
46 |
+
Process multiple images in batch
|
47 |
+
|
48 |
+
Args:
|
49 |
+
content_inputs: List of content image paths or PIL Images
|
50 |
+
style_inputs: List of style image paths or PIL Images
|
51 |
+
content_characters: List of characters if using character input mode
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tuple of (content_tensors, style_tensors, content_pil_images)
|
55 |
+
"""
|
56 |
+
batch_size = len(content_inputs)
|
57 |
+
assert len(style_inputs) == batch_size, (
|
58 |
+
"Content and style inputs must have same length"
|
59 |
+
)
|
60 |
+
|
61 |
+
if content_characters:
|
62 |
+
assert len(content_characters) == batch_size, (
|
63 |
+
"Content characters must match batch size"
|
64 |
+
)
|
65 |
+
|
66 |
+
# Transform setup
|
67 |
+
content_inference_transforms = transforms.Compose(
|
68 |
+
[
|
69 |
+
transforms.Resize(
|
70 |
+
self.args.content_image_size,
|
71 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
72 |
+
),
|
73 |
+
transforms.ToTensor(),
|
74 |
+
transforms.Normalize([0.5], [0.5]),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
|
78 |
+
style_inference_transforms = transforms.Compose(
|
79 |
+
[
|
80 |
+
transforms.Resize(
|
81 |
+
self.args.style_image_size,
|
82 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
83 |
+
),
|
84 |
+
transforms.ToTensor(),
|
85 |
+
transforms.Normalize([0.5], [0.5]),
|
86 |
+
]
|
87 |
+
)
|
88 |
+
|
89 |
+
content_tensors = []
|
90 |
+
style_tensors = []
|
91 |
+
content_pil_images = []
|
92 |
+
|
93 |
+
# Process in parallel using ThreadPoolExecutor for I/O operations
|
94 |
+
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
|
95 |
+
# Submit content processing tasks
|
96 |
+
content_futures = []
|
97 |
+
for i, content_input in enumerate(content_inputs):
|
98 |
+
if content_characters and i < len(content_characters):
|
99 |
+
future = executor.submit(
|
100 |
+
self._process_content_character,
|
101 |
+
content_characters[i],
|
102 |
+
content_inference_transforms,
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
future = executor.submit(
|
106 |
+
self._process_content_image,
|
107 |
+
content_input,
|
108 |
+
content_inference_transforms,
|
109 |
+
)
|
110 |
+
content_futures.append(future)
|
111 |
+
|
112 |
+
# Submit style processing tasks
|
113 |
+
style_futures = []
|
114 |
+
for style_input in style_inputs:
|
115 |
+
future = executor.submit(
|
116 |
+
self._process_style_image, style_input, style_inference_transforms
|
117 |
+
)
|
118 |
+
style_futures.append(future)
|
119 |
+
|
120 |
+
# Collect results
|
121 |
+
for future in as_completed(content_futures):
|
122 |
+
try:
|
123 |
+
content_tensor, content_pil = future.result()
|
124 |
+
if content_tensor is not None:
|
125 |
+
content_tensors.append(content_tensor)
|
126 |
+
content_pil_images.append(content_pil)
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error processing content: {e}")
|
129 |
+
continue
|
130 |
+
|
131 |
+
for future in as_completed(style_futures):
|
132 |
+
try:
|
133 |
+
style_tensor = future.result()
|
134 |
+
if style_tensor is not None:
|
135 |
+
style_tensors.append(style_tensor)
|
136 |
+
except Exception as e:
|
137 |
+
print(f"Error processing style: {e}")
|
138 |
+
continue
|
139 |
+
|
140 |
+
# Stack tensors into batches
|
141 |
+
if content_tensors and style_tensors:
|
142 |
+
content_batch = torch.stack(content_tensors)
|
143 |
+
style_batch = torch.stack(style_tensors)
|
144 |
+
return content_batch, style_batch, content_pil_images
|
145 |
+
else:
|
146 |
+
return None, None, []
|
147 |
+
|
148 |
+
def _process_content_character(
|
149 |
+
self, character: str, transform
|
150 |
+
) -> Tuple[Optional[torch.Tensor], Optional[Image.Image]]:
|
151 |
+
"""Process content character into tensor"""
|
152 |
+
if not is_char_in_font(font_path=self.args.ttf_path, char=character):
|
153 |
+
print(f"Character '{character}' not found in font")
|
154 |
+
return None, None
|
155 |
+
|
156 |
+
font = load_ttf(ttf_path=self.args.ttf_path)
|
157 |
+
content_image = ttf2im(font=font, char=character)
|
158 |
+
content_image_pil = content_image.copy()
|
159 |
+
content_tensor = transform(content_image)
|
160 |
+
|
161 |
+
return content_tensor, content_image_pil
|
162 |
+
|
163 |
+
def _process_content_image(
|
164 |
+
self, image_input: Union[str, Image.Image], transform
|
165 |
+
) -> Tuple[Optional[torch.Tensor], None]:
|
166 |
+
"""Process content image into tensor"""
|
167 |
+
try:
|
168 |
+
if isinstance(image_input, str):
|
169 |
+
content_image = Image.open(image_input).convert("RGB")
|
170 |
+
else:
|
171 |
+
content_image = image_input.convert("RGB")
|
172 |
+
|
173 |
+
content_tensor = transform(content_image)
|
174 |
+
return content_tensor, None
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Error processing content image: {e}")
|
177 |
+
return None, None
|
178 |
+
|
179 |
+
def _process_style_image(
|
180 |
+
self, image_input: Union[str, Image.Image], transform
|
181 |
+
) -> Optional[torch.Tensor]:
|
182 |
+
"""Process style image into tensor"""
|
183 |
+
try:
|
184 |
+
if isinstance(image_input, str):
|
185 |
+
style_image = Image.open(image_input).convert("RGB")
|
186 |
+
else:
|
187 |
+
style_image = image_input.convert("RGB")
|
188 |
+
|
189 |
+
style_tensor = transform(style_image)
|
190 |
+
return style_tensor
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Error processing style image: {e}")
|
193 |
+
return None
|
194 |
+
|
195 |
+
|
196 |
+
def arg_parse():
|
197 |
+
from configs.fontdiffuser import get_parser
|
198 |
+
|
199 |
+
parser = get_parser()
|
200 |
+
parser.add_argument("--ckpt_dir", type=str, default=None)
|
201 |
+
parser.add_argument("--demo", action="store_true")
|
202 |
+
parser.add_argument(
|
203 |
+
"--controlnet",
|
204 |
+
type=bool,
|
205 |
+
default=False,
|
206 |
+
help="If in demo mode, the controlnet can be added.",
|
207 |
+
)
|
208 |
+
parser.add_argument("--character_input", action="store_true")
|
209 |
+
parser.add_argument("--content_character", type=str, default=None)
|
210 |
+
parser.add_argument("--content_image_path", type=str, default=None)
|
211 |
+
parser.add_argument("--style_image_path", type=str, default=None)
|
212 |
+
parser.add_argument("--save_image", action="store_true")
|
213 |
+
parser.add_argument(
|
214 |
+
"--save_image_dir", type=str, default=None, help="The saving directory."
|
215 |
+
)
|
216 |
+
parser.add_argument("--device", type=str, default="cuda:0")
|
217 |
+
parser.add_argument("--ttf_path", type=str, default="ttf/KaiXinSongA.ttf")
|
218 |
+
|
219 |
+
# Batch processing arguments
|
220 |
+
parser.add_argument(
|
221 |
+
"--batch_size",
|
222 |
+
type=int,
|
223 |
+
default=4,
|
224 |
+
help="Batch size for processing multiple images",
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--max_batch_size",
|
228 |
+
type=int,
|
229 |
+
default=8,
|
230 |
+
help="Maximum batch size based on GPU memory",
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--num_workers",
|
234 |
+
type=int,
|
235 |
+
default=4,
|
236 |
+
help="Number of workers for parallel image loading",
|
237 |
+
)
|
238 |
+
parser.add_argument(
|
239 |
+
"--batch_content_paths",
|
240 |
+
type=str,
|
241 |
+
nargs="+",
|
242 |
+
default=None,
|
243 |
+
help="List of content image paths for batch processing",
|
244 |
+
)
|
245 |
+
parser.add_argument(
|
246 |
+
"--batch_style_paths",
|
247 |
+
type=str,
|
248 |
+
nargs="+",
|
249 |
+
default=None,
|
250 |
+
help="List of style image paths for batch processing",
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--batch_characters",
|
254 |
+
type=str,
|
255 |
+
nargs="+",
|
256 |
+
default=None,
|
257 |
+
help="List of characters for batch processing",
|
258 |
+
)
|
259 |
+
parser.add_argument(
|
260 |
+
"--adaptive_batch_size",
|
261 |
+
action="store_true",
|
262 |
+
help="Automatically adjust batch size based on GPU memory",
|
263 |
+
)
|
264 |
+
|
265 |
+
args = parser.parse_args()
|
266 |
+
style_image_size = args.style_image_size
|
267 |
+
content_image_size = args.content_image_size
|
268 |
+
args.style_image_size = (style_image_size, style_image_size)
|
269 |
+
args.content_image_size = (content_image_size, content_image_size)
|
270 |
+
|
271 |
+
return args
|
272 |
+
|
273 |
+
|
274 |
+
def get_optimal_batch_size(args) -> int:
|
275 |
+
"""Determine optimal batch size based on GPU memory"""
|
276 |
+
if not torch.cuda.is_available():
|
277 |
+
return 1
|
278 |
+
|
279 |
+
# Get GPU memory info
|
280 |
+
gpu_memory = torch.cuda.get_device_properties(args.device).total_memory / (
|
281 |
+
1024**3
|
282 |
+
) # GB
|
283 |
+
|
284 |
+
# Estimate batch size based on GPU memory (rough heuristic)
|
285 |
+
if gpu_memory >= 24: # RTX 4090, A100, etc.
|
286 |
+
optimal_batch = min(16, args.max_batch_size)
|
287 |
+
elif gpu_memory >= 12: # RTX 3080 Ti, RTX 4070 Ti, etc.
|
288 |
+
optimal_batch = min(8, args.max_batch_size)
|
289 |
+
elif gpu_memory >= 8: # RTX 3070, RTX 4060 Ti, etc.
|
290 |
+
optimal_batch = min(4, args.max_batch_size)
|
291 |
+
else: # Lower end GPUs
|
292 |
+
optimal_batch = min(2, args.max_batch_size)
|
293 |
+
|
294 |
+
return optimal_batch
|
295 |
+
|
296 |
+
|
297 |
+
def load_fontdiffuer_pipeline(args):
|
298 |
+
"""Load FontDiffuser pipeline (unchanged from original)"""
|
299 |
+
# Load the model state_dict
|
300 |
+
unet = build_unet(args=args)
|
301 |
+
unet.load_state_dict(torch.load(f"{args.ckpt_dir}/unet.pth"))
|
302 |
+
style_encoder = build_style_encoder(args=args)
|
303 |
+
style_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/style_encoder.pth"))
|
304 |
+
content_encoder = build_content_encoder(args=args)
|
305 |
+
content_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/content_encoder.pth"))
|
306 |
+
model = FontDiffuserModelDPM(
|
307 |
+
unet=unet, style_encoder=style_encoder, content_encoder=content_encoder
|
308 |
+
)
|
309 |
+
model.to(args.device)
|
310 |
+
print("Loaded the model state_dict successfully!")
|
311 |
+
|
312 |
+
# Load the training ddpm_scheduler.
|
313 |
+
train_scheduler = build_ddpm_scheduler(args=args)
|
314 |
+
print("Loaded training DDPM scheduler sucessfully!")
|
315 |
+
|
316 |
+
# Load the DPM_Solver to generate the sample.
|
317 |
+
pipe = FontDiffuserDPMPipeline(
|
318 |
+
model=model,
|
319 |
+
ddpm_train_scheduler=train_scheduler,
|
320 |
+
model_type=args.model_type,
|
321 |
+
guidance_type=args.guidance_type,
|
322 |
+
guidance_scale=args.guidance_scale,
|
323 |
+
)
|
324 |
+
print("Loaded dpm_solver pipeline sucessfully!")
|
325 |
+
|
326 |
+
return pipe
|
327 |
+
|
328 |
+
|
329 |
+
def batch_sampling(
|
330 |
+
args,
|
331 |
+
pipe,
|
332 |
+
content_inputs: List[Union[str, Image.Image]],
|
333 |
+
style_inputs: List[Union[str, Image.Image]],
|
334 |
+
content_characters: Optional[List[str]] = None,
|
335 |
+
) -> List[Image.Image]:
|
336 |
+
"""
|
337 |
+
Perform batch sampling with FontDiffuser
|
338 |
+
|
339 |
+
Args:
|
340 |
+
args: Arguments
|
341 |
+
pipe: FontDiffuser pipeline
|
342 |
+
content_inputs: List of content images/paths
|
343 |
+
style_inputs: List of style images/paths
|
344 |
+
content_characters: List of characters (if using character input)
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
List of generated images
|
348 |
+
"""
|
349 |
+
if not args.demo:
|
350 |
+
os.makedirs(args.save_image_dir, exist_ok=True)
|
351 |
+
save_args_to_yaml(
|
352 |
+
args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml"
|
353 |
+
)
|
354 |
+
|
355 |
+
if args.seed:
|
356 |
+
set_seed(seed=args.seed)
|
357 |
+
|
358 |
+
# Determine optimal batch size
|
359 |
+
if args.adaptive_batch_size:
|
360 |
+
optimal_batch_size = get_optimal_batch_size(args)
|
361 |
+
print(f"Using adaptive batch size: {optimal_batch_size}")
|
362 |
+
else:
|
363 |
+
optimal_batch_size = args.batch_size
|
364 |
+
|
365 |
+
batch_processor = BatchProcessor(args)
|
366 |
+
total_samples = len(content_inputs)
|
367 |
+
all_generated_images = []
|
368 |
+
|
369 |
+
print(f"Processing {total_samples} samples in batches of {optimal_batch_size}")
|
370 |
+
|
371 |
+
# Process in batches
|
372 |
+
for batch_start in range(0, total_samples, optimal_batch_size):
|
373 |
+
batch_end = min(batch_start + optimal_batch_size, total_samples)
|
374 |
+
batch_content = content_inputs[batch_start:batch_end]
|
375 |
+
batch_style = style_inputs[batch_start:batch_end]
|
376 |
+
batch_chars = (
|
377 |
+
content_characters[batch_start:batch_end] if content_characters else None
|
378 |
+
)
|
379 |
+
|
380 |
+
print(
|
381 |
+
f"Processing batch {batch_start // optimal_batch_size + 1}/{(total_samples + optimal_batch_size - 1) // optimal_batch_size}"
|
382 |
+
)
|
383 |
+
|
384 |
+
# Process batch
|
385 |
+
content_batch, style_batch, content_pil_images = (
|
386 |
+
batch_processor.batch_image_process(batch_content, batch_style, batch_chars)
|
387 |
+
)
|
388 |
+
|
389 |
+
if content_batch is None or style_batch is None:
|
390 |
+
print("Skipping batch due to processing errors")
|
391 |
+
continue
|
392 |
+
|
393 |
+
current_batch_size = content_batch.shape[0]
|
394 |
+
|
395 |
+
with torch.no_grad():
|
396 |
+
content_batch = content_batch.to(args.device)
|
397 |
+
style_batch = style_batch.to(args.device)
|
398 |
+
|
399 |
+
print(f"Generating {current_batch_size} images with DPM-Solver++...")
|
400 |
+
start_time = time.time()
|
401 |
+
|
402 |
+
try:
|
403 |
+
# Generate batch
|
404 |
+
images = pipe.generate(
|
405 |
+
content_images=content_batch,
|
406 |
+
style_images=style_batch,
|
407 |
+
batch_size=current_batch_size,
|
408 |
+
order=args.order,
|
409 |
+
num_inference_step=args.num_inference_steps,
|
410 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
411 |
+
t_start=args.t_start,
|
412 |
+
t_end=args.t_end,
|
413 |
+
dm_size=args.content_image_size,
|
414 |
+
algorithm_type=args.algorithm_type,
|
415 |
+
skip_type=args.skip_type,
|
416 |
+
method=args.method,
|
417 |
+
correcting_x0_fn=args.correcting_x0_fn,
|
418 |
+
)
|
419 |
+
|
420 |
+
end_time = time.time()
|
421 |
+
print(f"Batch generation completed in {end_time - start_time:.2f}s")
|
422 |
+
|
423 |
+
# Save images if requested
|
424 |
+
if args.save_image:
|
425 |
+
save_batch_images(
|
426 |
+
args,
|
427 |
+
images,
|
428 |
+
content_pil_images,
|
429 |
+
batch_content,
|
430 |
+
batch_style,
|
431 |
+
batch_start,
|
432 |
+
)
|
433 |
+
|
434 |
+
all_generated_images.extend(images)
|
435 |
+
|
436 |
+
except RuntimeError as e:
|
437 |
+
if "out of memory" in str(e).lower():
|
438 |
+
print(
|
439 |
+
f"GPU out of memory with batch size {current_batch_size}, trying smaller batch..."
|
440 |
+
)
|
441 |
+
torch.cuda.empty_cache()
|
442 |
+
# Retry with smaller batch
|
443 |
+
smaller_batch_size = max(1, current_batch_size // 2)
|
444 |
+
for sub_batch_start in range(
|
445 |
+
0, current_batch_size, smaller_batch_size
|
446 |
+
):
|
447 |
+
sub_batch_end = min(
|
448 |
+
sub_batch_start + smaller_batch_size, current_batch_size
|
449 |
+
)
|
450 |
+
sub_content = content_batch[sub_batch_start:sub_batch_end]
|
451 |
+
sub_style = style_batch[sub_batch_start:sub_batch_end]
|
452 |
+
|
453 |
+
sub_images = pipe.generate(
|
454 |
+
content_images=sub_content,
|
455 |
+
style_images=sub_style,
|
456 |
+
batch_size=sub_batch_end - sub_batch_start,
|
457 |
+
order=args.order,
|
458 |
+
num_inference_step=args.num_inference_steps,
|
459 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
460 |
+
t_start=args.t_start,
|
461 |
+
t_end=args.t_end,
|
462 |
+
dm_size=args.content_image_size,
|
463 |
+
algorithm_type=args.algorithm_type,
|
464 |
+
skip_type=args.skip_type,
|
465 |
+
method=args.method,
|
466 |
+
correcting_x0_fn=args.correcting_x0_fn,
|
467 |
+
)
|
468 |
+
all_generated_images.extend(sub_images)
|
469 |
+
else:
|
470 |
+
print(f"Error during generation: {e}")
|
471 |
+
continue
|
472 |
+
|
473 |
+
# Clear GPU cache between batches
|
474 |
+
torch.cuda.empty_cache()
|
475 |
+
|
476 |
+
print(f"Batch processing completed! Generated {len(all_generated_images)} images.")
|
477 |
+
return all_generated_images
|
478 |
+
|
479 |
+
|
480 |
+
def save_batch_images(
|
481 |
+
args, images, content_pil_images, batch_content, batch_style, batch_offset
|
482 |
+
):
|
483 |
+
"""Save batch of generated images"""
|
484 |
+
for i, image in enumerate(images):
|
485 |
+
# Create unique filename for each image
|
486 |
+
image_idx = batch_offset + i
|
487 |
+
save_single_image(
|
488 |
+
save_dir=args.save_image_dir, image=image, suffix=f"_{image_idx:04d}"
|
489 |
+
)
|
490 |
+
|
491 |
+
# Save with content and style context if available
|
492 |
+
if args.character_input and i < len(content_pil_images):
|
493 |
+
save_image_with_content_style(
|
494 |
+
save_dir=args.save_image_dir,
|
495 |
+
image=image,
|
496 |
+
content_image_pil=content_pil_images[i],
|
497 |
+
content_image_path=None,
|
498 |
+
style_image_path=batch_style[i]
|
499 |
+
if isinstance(batch_style[i], str)
|
500 |
+
else None,
|
501 |
+
resolution=args.resolution,
|
502 |
+
suffix=f"_{image_idx:04d}",
|
503 |
+
)
|
504 |
+
elif not args.character_input:
|
505 |
+
save_image_with_content_style(
|
506 |
+
save_dir=args.save_image_dir,
|
507 |
+
image=image,
|
508 |
+
content_image_pil=None,
|
509 |
+
content_image_path=batch_content[i]
|
510 |
+
if isinstance(batch_content[i], str)
|
511 |
+
else None,
|
512 |
+
style_image_path=batch_style[i]
|
513 |
+
if isinstance(batch_style[i], str)
|
514 |
+
else None,
|
515 |
+
resolution=args.resolution,
|
516 |
+
suffix=f"_{image_idx:04d}",
|
517 |
+
)
|
518 |
+
|
519 |
+
|
520 |
+
def sampling(args, pipe, content_image=None, style_image=None):
|
521 |
+
"""Original single image sampling function (for backward compatibility)"""
|
522 |
+
if not args.demo:
|
523 |
+
os.makedirs(args.save_image_dir, exist_ok=True)
|
524 |
+
save_args_to_yaml(
|
525 |
+
args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml"
|
526 |
+
)
|
527 |
+
|
528 |
+
if args.seed:
|
529 |
+
set_seed(seed=args.seed)
|
530 |
+
|
531 |
+
# Use single image processing
|
532 |
+
if args.character_input:
|
533 |
+
content_inputs = (
|
534 |
+
[args.content_character] if hasattr(args, "content_character") else ["A"]
|
535 |
+
)
|
536 |
+
style_inputs = [style_image or args.style_image_path]
|
537 |
+
result = batch_sampling(args, pipe, [], style_inputs, content_inputs)
|
538 |
+
else:
|
539 |
+
content_inputs = [content_image or args.content_image_path]
|
540 |
+
style_inputs = [style_image or args.style_image_path]
|
541 |
+
result = batch_sampling(args, pipe, content_inputs, style_inputs)
|
542 |
+
|
543 |
+
return result[0] if result else None
|
544 |
+
|
545 |
+
|
546 |
+
# Additional utility functions for batch processing
|
547 |
+
def load_images_from_directory(
|
548 |
+
directory_path: str, extensions: List[str] = [".jpg", ".jpeg", ".png", ".bmp"]
|
549 |
+
) -> List[str]:
|
550 |
+
"""Load all image paths from a directory"""
|
551 |
+
directory = Path(directory_path)
|
552 |
+
image_paths = []
|
553 |
+
|
554 |
+
for ext in extensions:
|
555 |
+
image_paths.extend(directory.glob(f"*{ext}"))
|
556 |
+
image_paths.extend(directory.glob(f"*{ext.upper()}"))
|
557 |
+
|
558 |
+
return [str(path) for path in sorted(image_paths)]
|
559 |
+
|
560 |
+
|
561 |
+
def create_batch_from_config(
|
562 |
+
config_file: str,
|
563 |
+
) -> Tuple[List[str], List[str], List[str]]:
|
564 |
+
"""Create batch inputs from configuration file"""
|
565 |
+
import json
|
566 |
+
|
567 |
+
with open(config_file, "r") as f:
|
568 |
+
config = json.load(f)
|
569 |
+
|
570 |
+
content_inputs = config.get("content_images", [])
|
571 |
+
style_inputs = config.get("style_images", [])
|
572 |
+
characters = config.get("characters", [])
|
573 |
+
|
574 |
+
return content_inputs, style_inputs, characters
|
575 |
+
|
576 |
+
|
577 |
+
if __name__ == "__main__":
|
578 |
+
args = arg_parse()
|
579 |
+
|
580 |
+
# Load fontdiffuser pipeline
|
581 |
+
pipe = load_fontdiffuer_pipeline(args=args)
|
582 |
+
|
583 |
+
# Check if batch processing is requested
|
584 |
+
if args.batch_content_paths or args.batch_style_paths or args.batch_characters:
|
585 |
+
# Batch processing mode
|
586 |
+
content_inputs = args.batch_content_paths or []
|
587 |
+
style_inputs = args.batch_style_paths or []
|
588 |
+
characters = args.batch_characters or None
|
589 |
+
|
590 |
+
if characters and args.character_input:
|
591 |
+
# Character-based batch processing
|
592 |
+
style_inputs = style_inputs or [args.style_image_path] * len(characters)
|
593 |
+
generated_images = batch_sampling(args, pipe, [], style_inputs, characters)
|
594 |
+
else:
|
595 |
+
# Image-based batch processing
|
596 |
+
if len(content_inputs) != len(style_inputs):
|
597 |
+
print("Error: Number of content and style images must match")
|
598 |
+
exit(1)
|
599 |
+
generated_images = batch_sampling(args, pipe, content_inputs, style_inputs)
|
600 |
+
|
601 |
+
print(f"Batch processing completed! Generated {len(generated_images)} images.")
|
602 |
+
else:
|
603 |
+
# Single image processing (original behavior)
|
604 |
+
out_image = sampling(args=args, pipe=pipe)
|