ciditel commited on
Commit
63399bb
·
verified ·
1 Parent(s): 54e47f4
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -8,14 +8,15 @@ from diffusers import AutoPipelineForText2Image
8
  from diffusers import AutoPipelineForImage2Image
9
  from diffusers.utils import load_image, export_to_video
10
  from diffusers import StableVideoDiffusionPipeline
11
-
12
-
13
-
 
14
 
15
 
16
 
17
  def img2video(image,seed="",fps=7,outfile=""):
18
- pipelineVideo = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt",).to("cuda")
19
  if seed=="":
20
  seed=random.randint(0, 5000)
21
 
@@ -29,19 +30,18 @@ def img2video(image,seed="",fps=7,outfile=""):
29
  image = load_image(image)
30
  image = image.resize((1024, 576))
31
  generator = torch.manual_seed(seed)
32
- frames = pipelineVideo(image, decode_chunk_size=8, generator=generator).frames[0]
33
  export_to_video(frames, outfile, fps=fps)
34
  time.time(30)
35
  return outfile
36
 
37
  def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.",guidance_scale=0.0, num_inference_steps=1):
38
- pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to("cuda")
39
  image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
40
  return image
41
 
42
  def img2img(image,prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe.", guidance_scale=0.0, num_inference_steps=1,strength=0.5):
43
- pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to("cuda")
44
- pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
45
  init_image = load_image(image)
46
  init_image = init_image.resize((512, 512))
47
  image = pipeline_image2image(prompt, image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
 
8
  from diffusers import AutoPipelineForImage2Image
9
  from diffusers.utils import load_image, export_to_video
10
  from diffusers import StableVideoDiffusionPipeline
11
+ pipeline_image2video = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt",).to("cuda")
12
+ pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to("cuda")
13
+ pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
14
+ pipeline_image2video.enable_model_cpu_offload()
15
 
16
 
17
 
18
  def img2video(image,seed="",fps=7,outfile=""):
19
+
20
  if seed=="":
21
  seed=random.randint(0, 5000)
22
 
 
30
  image = load_image(image)
31
  image = image.resize((1024, 576))
32
  generator = torch.manual_seed(seed)
33
+ frames = pipeline_image2video(image, decode_chunk_size=8, generator=generator).frames[0]
34
  export_to_video(frames, outfile, fps=fps)
35
  time.time(30)
36
  return outfile
37
 
38
  def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.",guidance_scale=0.0, num_inference_steps=1):
39
+
40
  image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
41
  return image
42
 
43
  def img2img(image,prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe.", guidance_scale=0.0, num_inference_steps=1,strength=0.5):
44
+
 
45
  init_image = load_image(image)
46
  init_image = init_image.resize((512, 512))
47
  image = pipeline_image2image(prompt, image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]