Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,147 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
# Set page config
|
8 |
+
st.set_page_config(page_title="ML Models Comparison Dashboard", layout="wide")
|
9 |
+
|
10 |
+
# Title and description
|
11 |
+
st.title("Machine Learning Models Comparison Dashboard")
|
12 |
+
st.write("Compare performance metrics of different ML models on the CIFAR-10 dataset")
|
13 |
+
|
14 |
+
# Pre-computed metrics (replace these with your actual results)
|
15 |
+
results = {
|
16 |
+
'Accuracy': {
|
17 |
+
'KNN': 0.345, # Replace with your actual values
|
18 |
+
'Logistic Regression': 0.389,
|
19 |
+
'Random Forest': 0.412,
|
20 |
+
'Naive Bayes': 0.298,
|
21 |
+
'K-Means': 0.275,
|
22 |
+
'CNN': 0.456
|
23 |
+
},
|
24 |
+
'Precision': {
|
25 |
+
'KNN': 0.342,
|
26 |
+
'Logistic Regression': 0.387,
|
27 |
+
'Random Forest': 0.409,
|
28 |
+
'Naive Bayes': 0.295,
|
29 |
+
'K-Means': 0.271,
|
30 |
+
'CNN': 0.453
|
31 |
+
},
|
32 |
+
'Recall': {
|
33 |
+
'KNN': 0.345,
|
34 |
+
'Logistic Regression': 0.389,
|
35 |
+
'Random Forest': 0.412,
|
36 |
+
'Naive Bayes': 0.298,
|
37 |
+
'K-Means': 0.275,
|
38 |
+
'CNN': 0.456
|
39 |
+
},
|
40 |
+
'F1': {
|
41 |
+
'KNN': 0.343,
|
42 |
+
'Logistic Regression': 0.388,
|
43 |
+
'Random Forest': 0.410,
|
44 |
+
'Naive Bayes': 0.296,
|
45 |
+
'K-Means': 0.273,
|
46 |
+
'CNN': 0.454
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
# Pre-computed confusion matrices (replace these with your actual confusion matrices)
|
51 |
+
confusion_matrices = {
|
52 |
+
'KNN': np.random.randint(0, 100, (10, 10)), # Replace with actual confusion matrices
|
53 |
+
'Logistic Regression': np.random.randint(0, 100, (10, 10)),
|
54 |
+
'Random Forest': np.random.randint(0, 100, (10, 10)),
|
55 |
+
'Naive Bayes': np.random.randint(0, 100, (10, 10)),
|
56 |
+
'K-Means': np.random.randint(0, 100, (10, 10)),
|
57 |
+
'CNN': np.random.randint(0, 100, (10, 10))
|
58 |
+
}
|
59 |
+
|
60 |
+
# Create tabs for different visualizations
|
61 |
+
tab1, tab2, tab3 = st.tabs(["Metrics Comparison", "Confusion Matrices", "Radar Plot"])
|
62 |
+
|
63 |
+
with tab1:
|
64 |
+
st.header("Performance Metrics Comparison")
|
65 |
+
|
66 |
+
# Convert results to DataFrame for plotting
|
67 |
+
df_metrics = pd.DataFrame(results)
|
68 |
+
df_metrics.index.name = 'Model'
|
69 |
+
df_metrics = df_metrics.reset_index()
|
70 |
+
|
71 |
+
# Create bar plot using plotly
|
72 |
+
fig = px.bar(df_metrics.melt(id_vars=['Model'],
|
73 |
+
var_name='Metric',
|
74 |
+
value_name='Score'),
|
75 |
+
x='Model', y='Score', color='Metric', barmode='group',
|
76 |
+
title='Model Performance Comparison')
|
77 |
+
fig.update_layout(xaxis_tickangle=-45)
|
78 |
+
st.plotly_chart(fig)
|
79 |
+
|
80 |
+
# Display metrics table
|
81 |
+
st.subheader("Metrics Table")
|
82 |
+
st.dataframe(df_metrics.set_index('Model').style.format("{:.3f}"))
|
83 |
+
|
84 |
+
with tab2:
|
85 |
+
st.header("Confusion Matrices")
|
86 |
+
|
87 |
+
# Select model for confusion matrix
|
88 |
+
selected_model = st.selectbox("Select Model", list(confusion_matrices.keys()))
|
89 |
+
|
90 |
+
# Plot confusion matrix using plotly
|
91 |
+
fig = px.imshow(confusion_matrices[selected_model],
|
92 |
+
labels=dict(x="Predicted", y="True"),
|
93 |
+
title=f"Confusion Matrix - {selected_model}")
|
94 |
+
st.plotly_chart(fig)
|
95 |
+
|
96 |
+
with tab3:
|
97 |
+
st.header("Radar Plot Comparison")
|
98 |
+
|
99 |
+
# Create radar plot using plotly
|
100 |
+
fig = go.Figure()
|
101 |
+
metrics = list(results.keys())
|
102 |
+
models = list(results['Accuracy'].keys())
|
103 |
+
|
104 |
+
for model in models:
|
105 |
+
values = [results[metric][model] for metric in metrics]
|
106 |
+
values.append(values[0]) # Complete the circle
|
107 |
+
|
108 |
+
fig.add_trace(go.Scatterpolar(
|
109 |
+
r=values,
|
110 |
+
theta=metrics + [metrics[0]],
|
111 |
+
name=model
|
112 |
+
))
|
113 |
+
|
114 |
+
fig.update_layout(
|
115 |
+
polar=dict(radialaxis=dict(visible=True, range=[0, 1])),
|
116 |
+
showlegend=True,
|
117 |
+
title="Model Comparison - All Metrics"
|
118 |
+
)
|
119 |
+
|
120 |
+
st.plotly_chart(fig)
|
121 |
+
|
122 |
+
# Add download button for metrics
|
123 |
+
@st.cache_data
|
124 |
+
def convert_df_to_csv():
|
125 |
+
return df_metrics.to_csv(index=False)
|
126 |
+
|
127 |
+
st.sidebar.header("Download Data")
|
128 |
+
csv = convert_df_to_csv()
|
129 |
+
st.sidebar.download_button(
|
130 |
+
label="Download metrics as CSV",
|
131 |
+
data=csv,
|
132 |
+
file_name='model_metrics.csv',
|
133 |
+
mime='text/csv',
|
134 |
+
)
|
135 |
+
|
136 |
+
# Add explanatory text
|
137 |
+
st.sidebar.markdown("""
|
138 |
+
### Dashboard Features:
|
139 |
+
1. View pre-computed metrics for all models
|
140 |
+
2. Compare performance across different metrics
|
141 |
+
3. Examine confusion matrices
|
142 |
+
4. Download metrics data as CSV
|
143 |
+
""")
|
144 |
+
|
145 |
+
# Footer
|
146 |
+
st.markdown("---")
|
147 |
+
st.markdown("Dashboard created with Streamlit for ML Models Comparison")
|