Mnist-Digits / app.py
cisemh's picture
Update app.py
1dc2a74 verified
raw
history blame
3.23 kB
import cv2
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
title = "Welcome on your first sketch recognition app!"
head = (
"<center>"
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
"</center>"
)
# Model yükleniyor
model = tf.keras.models.load_model("number_recognition_model_colab.keras")
img_size = 28
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
def predict(img):
try:
# Enhanced image validation and conversion
if img is None:
raise ValueError("No image provided")
# Convert to numpy array if it's a PIL Image
if isinstance(img, Image.Image):
img = np.array(img)
# Handle base64 image strings
elif isinstance(img, str):
# Check if it's a base64 data URL
if img.startswith('data:image'):
# Split and decode base64 part
img = img.split(',')[1]
# Decode base64 to image
try:
img = Image.open(io.BytesIO(base64.b64decode(img)))
img = np.array(img)
except Exception as e:
print(f"Base64 decoding error: {e}")
raise ValueError("Invalid base64 image")
# Validate numpy array
if not isinstance(img, np.ndarray):
raise ValueError("Input could not be converted to a valid image")
# Print initial image details for debugging
print(f"Initial image type: {type(img)}, shape: {img.shape}")
# Handle color channels
if img.ndim == 3:
if img.shape[-1] == 3: # Color image
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
elif img.shape[-1] == 4: # RGBA image
img = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)
# Ensure single channel
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
# Resize and normalize
img = cv2.resize(img, (img_size, img_size))
img = img.astype('float32') / 255.0
img = img.reshape(1, img_size, img_size, 1)
# Print processed image details
print(f"Processed image shape: {img.shape}")
# Get predictions from the model
preds = model.predict(img)[0]
# Print predictions for debugging
print("Predictions:", preds)
# Return predictions as a dictionary
return {label: float(pred) for label, pred in zip(labels, preds)}
except Exception as e:
# Comprehensive error logging
print(f"Full error during prediction: {e}")
return {"Error": str(e)}
# Set up the Gradio interface with the input as a sketchpad and output as labels
label = gr.Label(num_top_classes=3)
# Gradio arayüzü
interface = gr.Interface(
fn=predict,
inputs=gr.Sketchpad(type="pil"),
outputs=label,
title="Sketch Recognition App",
description="Draw a number (0-9) and see the model's top predictions."
)
interface.launch(debug=True, share=True)