Mnist-Digits / app.py
cisemh's picture
Update app.py
9b95375 verified
raw
history blame
2.59 kB
import cv2
import gradio as gr
import tensorflow as tf
import numpy as np
import PIL.Image
title = "Welcome on your first sketch recognition app!"
head = (
"<center>"
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
"</center>"
)
# Model yükleniyor
model = tf.keras.models.load_model("number_recognition_model_colab.keras")
img_size = 28
# Etiketler (0'dan 9'a kadar sayılar)
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
# Tahmin fonksiyonu
def predict(img):
try:
# If the input is a dictionary (Gradio sketchpad), extract the image
if isinstance(img, dict):
img = img.get('image', None) # Get the image from the dictionary
if img is None:
raise ValueError("No image data found")
# Convert the input image to a NumPy array if needed
if not isinstance(img, np.ndarray):
img = np.array(img)
# Print shape and type of the input image
print(f"Initial image type: {type(img)}, shape: {img.shape}")
# Ensure the image is in grayscale and has a single channel
if img.ndim == 3 and img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
elif img.ndim == 2:
img = np.expand_dims(img, axis=-1)
# Print the shape of the grayscale image
print(f"Grayscale image shape: {img.shape}")
# Resize the image
img = cv2.resize(img, (img_size, img_size))
# Normalize the image
img = img.astype('float32') / 255.0
img = img.reshape(1, img_size, img_size, 1)
# Print the shape after resizing and normalizing
print(f"Processed image shape: {img.shape}")
# Get the predictions from the model
preds = model.predict(img)[0]
# Print the predictions
print("Predictions:", preds)
# Return the predictions for each label
return {label: float(pred) for label, pred in zip(labels, preds)}
except Exception as e:
# Print the exception to the console
print(f"Error during prediction: {e}")
return {"Error": str(e)}
# Set up the Gradio interface with the input as a sketchpad and output as labels
label = gr.Label(num_top_classes=3)
# Gradio arayüzü
interface = gr.Interface(
fn=predict,
inputs="sketchpad",
outputs="textbox",
title="Sketch Recognition App",
description="Draw a number (0-9) and see the model's top predictions."
)
interface.launch(debug=True)