Spaces:
Sleeping
Sleeping
import cv2 | |
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
title = "Welcome to your first sketch recognition app!" | |
head = ( | |
"<center>" | |
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided." | |
"</center>" | |
) | |
ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)." | |
img_size = 28 | |
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] | |
# Model yükleniyor | |
model = tf.keras.models.load_model("number_recognition_model_colab.keras") | |
def predict(img): | |
try: | |
# Girdi görselini NumPy array'e çevir | |
if not isinstance(img, np.ndarray): | |
img = np.array(img) | |
# Görüntüyü gri tonlamaya çevir ve yeniden boyutlandır | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if img.ndim == 3 else img | |
img = cv2.resize(img, (img_size, img_size)) | |
img = img.astype('float32') / 255.0 | |
img = img.reshape(1, img_size, img_size, 1) | |
preds = model.predict(img)[0] | |
return {label: float(pred) for label, pred in zip(labels, preds)} | |
except Exception as e: | |
return {"Error": str(e)} | |
label = gr.Label(num_top_classes=3) | |
# Yeni Gradio bileşenleriyle uyumlu hale getirildi | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Sketchpad(label="Draw a number"), # Sketchpad kullanımı | |
outputs=label, | |
title=title, | |
description=head, | |
article=ref | |
) | |
interface.launch(debug=True) | |