Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,38 +3,61 @@ import gradio as gr
|
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# Image size and labels
|
10 |
img_size = 28
|
11 |
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
12 |
|
13 |
-
|
|
|
14 |
def predict(img):
|
15 |
try:
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
img = cv2.resize(img, (img_size, img_size))
|
19 |
-
|
|
|
|
|
20 |
img = img.reshape(1, img_size, img_size, 1)
|
21 |
|
22 |
-
#
|
|
|
|
|
23 |
preds = model.predict(img)[0]
|
|
|
|
|
|
|
|
|
24 |
return {label: float(pred) for label, pred in zip(labels, preds)}
|
25 |
except Exception as e:
|
|
|
|
|
26 |
return {"Error": str(e)}
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
inputs=gr.Sketchpad(label="Draw a number"), # Sketchpad input
|
33 |
-
outputs=gr.Label(num_top_classes=3), # Label output to show top 3 predictions
|
34 |
-
title="Number Recognition App",
|
35 |
-
description=(
|
36 |
-
"The model was trained to classify numbers (from 0 to 9). "
|
37 |
-
"Draw a number in the sketchpad below and see the prediction!"
|
38 |
-
)
|
39 |
-
)
|
40 |
-
demo.launch()
|
|
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
|
6 |
+
title = "Welcome on your first sketch recognition app!"
|
7 |
+
|
8 |
+
head = (
|
9 |
+
"<center>"
|
10 |
+
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
|
11 |
+
"</center>"
|
12 |
+
)
|
13 |
+
|
14 |
+
ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
|
15 |
|
|
|
16 |
img_size = 28
|
17 |
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
18 |
|
19 |
+
model = tf.keras.models.load_model("number_recognition_model_colab.keras")
|
20 |
+
|
21 |
def predict(img):
|
22 |
try:
|
23 |
+
# Convert the input image to a NumPy array if needed
|
24 |
+
if not isinstance(img, np.ndarray):
|
25 |
+
img = np.array(img)
|
26 |
+
|
27 |
+
# Print shape and type of the input image
|
28 |
+
print(f"Initial image type: {type(img)}, shape: {img.shape}")
|
29 |
+
|
30 |
+
# Ensure the image is in grayscale and has a single channel
|
31 |
+
if img.ndim == 3 and img.shape[-1] == 3:
|
32 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
33 |
+
elif img.ndim == 2:
|
34 |
+
img = np.expand_dims(img, axis=-1)
|
35 |
+
|
36 |
+
# Print the shape of the grayscale image
|
37 |
+
print(f"Grayscale image shape: {img.shape}")
|
38 |
+
|
39 |
+
# Resize the image
|
40 |
img = cv2.resize(img, (img_size, img_size))
|
41 |
+
|
42 |
+
# Normalize the image
|
43 |
+
img = img.astype('float32') / 255.0
|
44 |
img = img.reshape(1, img_size, img_size, 1)
|
45 |
|
46 |
+
# Print the shape after resizing and normalizing
|
47 |
+
print(f"Processed image shape: {img.shape}")
|
48 |
+
|
49 |
preds = model.predict(img)[0]
|
50 |
+
|
51 |
+
# Print the predictions
|
52 |
+
print("Predictions:", preds)
|
53 |
+
|
54 |
return {label: float(pred) for label, pred in zip(labels, preds)}
|
55 |
except Exception as e:
|
56 |
+
# Print the exception to the console
|
57 |
+
print(f"Error during prediction: {e}")
|
58 |
return {"Error": str(e)}
|
59 |
|
60 |
+
label = gr.Label(num_top_classes=3)
|
61 |
+
|
62 |
+
interface = gr.Interface(fn=predict, inputs="sketchpad", outputs=label, title=title, description=head, article=ref)
|
63 |
+
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|