Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,102 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
-
import
|
5 |
-
|
6 |
-
# Load the trained MNIST model
|
7 |
-
model = tf.keras.models.load_model("./number_recognition_model_colab.keras")
|
8 |
-
|
9 |
-
# Class names (0 to 9)
|
10 |
-
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
11 |
-
|
12 |
-
def predict(data):
|
13 |
-
# Extract the 'composite' key from the input dictionary
|
14 |
-
img = data["composite"]
|
15 |
-
img = np.array(img)
|
16 |
-
|
17 |
-
# Convert RGBA to RGB if needed
|
18 |
-
if img.shape[-1] == 4: # RGBA
|
19 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
|
20 |
-
|
21 |
-
# Convert RGB to Grayscale
|
22 |
-
if img.shape[-1] == 3: # RGB
|
23 |
-
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
24 |
-
|
25 |
-
# Resize image to 28x28
|
26 |
-
img = cv2.resize(img, (28, 28))
|
27 |
-
|
28 |
-
# Normalize pixel values to [0, 1]
|
29 |
-
img = img / 255.0
|
30 |
-
|
31 |
-
# Reshape to match model input (1, 28, 28, 1)
|
32 |
-
img = img.reshape(1, 28, 28, 1)
|
33 |
-
|
34 |
-
# Model predictions
|
35 |
-
preds = model.predict(img)[0]
|
36 |
-
|
37 |
-
print(preds)
|
38 |
-
|
39 |
-
# Get top 3 classes
|
40 |
-
top_3_classes = np.argsort(preds)[-3:][::-1]
|
41 |
-
top_3_probs = preds[top_3_classes]
|
42 |
-
class_names = [labels[i] for i in top_3_classes]
|
43 |
-
print(class_names, top_3_probs, top_3_classes)
|
44 |
|
45 |
-
|
46 |
-
return {class_names[i]: float(top_3_probs[i]) for i in range(3)}
|
47 |
|
48 |
-
# Title and description
|
49 |
-
title = "Welcome to your first sketch recognition app!"
|
50 |
head = (
|
51 |
"<center>"
|
52 |
-
"
|
53 |
-
"<p>The model is trained to classify numbers (from 0 to 9). "
|
54 |
-
"To test it, draw your number in the space provided (use the editing tools in the image editor).</p>"
|
55 |
"</center>"
|
56 |
)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
# Display title and description
|
61 |
-
gr.Markdown(head)
|
62 |
|
63 |
|
64 |
-
|
65 |
-
# Using ImageEditor with type='numpy'
|
66 |
-
im = gr.Sketchpad(type="numpy", label="Draw your digit here (use brush and eraser)")
|
67 |
|
68 |
-
|
69 |
-
label = gr.Label(num_top_classes=3, label="Predictions")
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
1 |
+
import cv2
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
title = "Welcome on your first sketch recognition app!"
|
|
|
8 |
|
|
|
|
|
9 |
head = (
|
10 |
"<center>"
|
11 |
+
"The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
|
|
|
|
|
12 |
"</center>"
|
13 |
)
|
14 |
|
15 |
+
# Model yükleniyor
|
16 |
+
model = tf.keras.models.load_model("./number_recognition_model_colab.keras")
|
|
|
|
|
17 |
|
18 |
|
19 |
+
img_size = 28
|
|
|
|
|
20 |
|
21 |
+
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
|
|
|
22 |
|
23 |
+
def predict(img):
|
24 |
+
try:
|
25 |
+
# Enhanced image validation and conversion
|
26 |
+
if img is None:
|
27 |
+
raise ValueError("No image provided")
|
28 |
+
|
29 |
+
# Convert to numpy array if it's a PIL Image
|
30 |
+
if isinstance(img, Image.Image):
|
31 |
+
img = np.array(img)
|
32 |
+
|
33 |
+
# Handle base64 image strings
|
34 |
+
elif isinstance(img, str):
|
35 |
+
# Check if it's a base64 data URL
|
36 |
+
if img.startswith('data:image'):
|
37 |
+
# Split and decode base64 part
|
38 |
+
img = img.split(',')[1]
|
39 |
+
|
40 |
+
# Decode base64 to image
|
41 |
+
try:
|
42 |
+
img = Image.open(io.BytesIO(base64.b64decode(img)))
|
43 |
+
img = np.array(img)
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Base64 decoding error: {e}")
|
46 |
+
raise ValueError("Invalid base64 image")
|
47 |
+
|
48 |
+
# Validate numpy array
|
49 |
+
if not isinstance(img, np.ndarray):
|
50 |
+
raise ValueError("Input could not be converted to a valid image")
|
51 |
+
|
52 |
+
# Print initial image details for debugging
|
53 |
+
print(f"Initial image type: {type(img)}, shape: {img.shape}")
|
54 |
+
|
55 |
+
# Handle color channels
|
56 |
+
if img.ndim == 3:
|
57 |
+
if img.shape[-1] == 3: # Color image
|
58 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
59 |
+
elif img.shape[-1] == 4: # RGBA image
|
60 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)
|
61 |
+
|
62 |
+
# Ensure single channel
|
63 |
+
if img.ndim == 2:
|
64 |
+
img = np.expand_dims(img, axis=-1)
|
65 |
+
|
66 |
+
# Resize and normalize
|
67 |
+
img = cv2.resize(img, (img_size, img_size))
|
68 |
+
img = img.astype('float32') / 255.0
|
69 |
+
img = img.reshape(1, img_size, img_size, 1)
|
70 |
+
|
71 |
+
# Print processed image details
|
72 |
+
print(f"Processed image shape: {img.shape}")
|
73 |
+
|
74 |
+
# Get predictions from the model
|
75 |
+
preds = model.predict(img)[0]
|
76 |
+
|
77 |
+
# Print predictions for debugging
|
78 |
+
print("Predictions:", preds)
|
79 |
+
|
80 |
+
# Return predictions as a dictionary
|
81 |
+
return {label: float(pred) for label, pred in zip(labels, preds)}
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
# Comprehensive error logging
|
85 |
+
print(f"Full error during prediction: {e}")
|
86 |
+
return {"Error": str(e)}
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# Set up the Gradio interface with the input as a sketchpad and output as labels
|
91 |
+
label = gr.Label(num_top_classes=3)
|
92 |
+
|
93 |
+
# Gradio arayüzü
|
94 |
+
interface = gr.Interface(
|
95 |
+
fn=predict,
|
96 |
+
inputs=gr.Sketchpad(type="pil"),
|
97 |
+
outputs=label,
|
98 |
+
title="Sketch Recognition App",
|
99 |
+
description="Draw a number (0-9) and see the model's top predictions."
|
100 |
+
)
|
101 |
|
102 |
+
interface.launch(debug=True, share=True)
|