cisemh commited on
Commit
80ee6b5
·
verified ·
1 Parent(s): 5f621f2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -60
app.py CHANGED
@@ -1,74 +1,102 @@
1
- import numpy as np
2
  import gradio as gr
3
  import tensorflow as tf
4
- import cv2
5
-
6
- # Load the trained MNIST model
7
- model = tf.keras.models.load_model("./number_recognition_model_colab.keras")
8
-
9
- # Class names (0 to 9)
10
- labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
11
-
12
- def predict(data):
13
- # Extract the 'composite' key from the input dictionary
14
- img = data["composite"]
15
- img = np.array(img)
16
-
17
- # Convert RGBA to RGB if needed
18
- if img.shape[-1] == 4: # RGBA
19
- img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
20
-
21
- # Convert RGB to Grayscale
22
- if img.shape[-1] == 3: # RGB
23
- img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
24
-
25
- # Resize image to 28x28
26
- img = cv2.resize(img, (28, 28))
27
-
28
- # Normalize pixel values to [0, 1]
29
- img = img / 255.0
30
-
31
- # Reshape to match model input (1, 28, 28, 1)
32
- img = img.reshape(1, 28, 28, 1)
33
-
34
- # Model predictions
35
- preds = model.predict(img)[0]
36
-
37
- print(preds)
38
-
39
- # Get top 3 classes
40
- top_3_classes = np.argsort(preds)[-3:][::-1]
41
- top_3_probs = preds[top_3_classes]
42
- class_names = [labels[i] for i in top_3_classes]
43
- print(class_names, top_3_probs, top_3_classes)
44
 
45
- # Return top 3 predictions as a dictionary
46
- return {class_names[i]: float(top_3_probs[i]) for i in range(3)}
47
 
48
- # Title and description
49
- title = "Welcome to your first sketch recognition app!"
50
  head = (
51
  "<center>"
52
- "<img src='./mnist-classes.png' width=400>"
53
- "<p>The model is trained to classify numbers (from 0 to 9). "
54
- "To test it, draw your number in the space provided (use the editing tools in the image editor).</p>"
55
  "</center>"
56
  )
57
 
58
-
59
- with gr.Blocks(title=title) as demo:
60
- # Display title and description
61
- gr.Markdown(head)
62
 
63
 
64
- with gr.Row():
65
- # Using ImageEditor with type='numpy'
66
- im = gr.Sketchpad(type="numpy", label="Draw your digit here (use brush and eraser)")
67
 
68
- # Output label (top 3 predictions)
69
- label = gr.Label(num_top_classes=3, label="Predictions")
70
 
71
- # Trigger prediction whenever the image changes
72
- im.change(predict, inputs=im, outputs=label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- demo.launch(share=True)
 
1
+ import cv2
2
  import gradio as gr
3
  import tensorflow as tf
4
+ import numpy as np
5
+ from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ title = "Welcome on your first sketch recognition app!"
 
8
 
 
 
9
  head = (
10
  "<center>"
11
+ "The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
 
 
12
  "</center>"
13
  )
14
 
15
+ # Model yükleniyor
16
+ model = tf.keras.models.load_model("./number_recognition_model_colab.keras")
 
 
17
 
18
 
19
+ img_size = 28
 
 
20
 
21
+ labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
 
22
 
23
+ def predict(img):
24
+ try:
25
+ # Enhanced image validation and conversion
26
+ if img is None:
27
+ raise ValueError("No image provided")
28
+
29
+ # Convert to numpy array if it's a PIL Image
30
+ if isinstance(img, Image.Image):
31
+ img = np.array(img)
32
+
33
+ # Handle base64 image strings
34
+ elif isinstance(img, str):
35
+ # Check if it's a base64 data URL
36
+ if img.startswith('data:image'):
37
+ # Split and decode base64 part
38
+ img = img.split(',')[1]
39
+
40
+ # Decode base64 to image
41
+ try:
42
+ img = Image.open(io.BytesIO(base64.b64decode(img)))
43
+ img = np.array(img)
44
+ except Exception as e:
45
+ print(f"Base64 decoding error: {e}")
46
+ raise ValueError("Invalid base64 image")
47
+
48
+ # Validate numpy array
49
+ if not isinstance(img, np.ndarray):
50
+ raise ValueError("Input could not be converted to a valid image")
51
+
52
+ # Print initial image details for debugging
53
+ print(f"Initial image type: {type(img)}, shape: {img.shape}")
54
+
55
+ # Handle color channels
56
+ if img.ndim == 3:
57
+ if img.shape[-1] == 3: # Color image
58
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
59
+ elif img.shape[-1] == 4: # RGBA image
60
+ img = cv2.cvtColor(img, cv2.COLOR_RGBA2GRAY)
61
+
62
+ # Ensure single channel
63
+ if img.ndim == 2:
64
+ img = np.expand_dims(img, axis=-1)
65
+
66
+ # Resize and normalize
67
+ img = cv2.resize(img, (img_size, img_size))
68
+ img = img.astype('float32') / 255.0
69
+ img = img.reshape(1, img_size, img_size, 1)
70
+
71
+ # Print processed image details
72
+ print(f"Processed image shape: {img.shape}")
73
+
74
+ # Get predictions from the model
75
+ preds = model.predict(img)[0]
76
+
77
+ # Print predictions for debugging
78
+ print("Predictions:", preds)
79
+
80
+ # Return predictions as a dictionary
81
+ return {label: float(pred) for label, pred in zip(labels, preds)}
82
+
83
+ except Exception as e:
84
+ # Comprehensive error logging
85
+ print(f"Full error during prediction: {e}")
86
+ return {"Error": str(e)}
87
+
88
+
89
+
90
+ # Set up the Gradio interface with the input as a sketchpad and output as labels
91
+ label = gr.Label(num_top_classes=3)
92
+
93
+ # Gradio arayüzü
94
+ interface = gr.Interface(
95
+ fn=predict,
96
+ inputs=gr.Sketchpad(type="pil"),
97
+ outputs=label,
98
+ title="Sketch Recognition App",
99
+ description="Draw a number (0-9) and see the model's top predictions."
100
+ )
101
 
102
+ interface.launch(debug=True, share=True)