cisemh commited on
Commit
a08ac70
·
verified ·
1 Parent(s): f797ca5

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -7
app.py CHANGED
@@ -1,13 +1,14 @@
1
  import cv2
2
  import gradio as gr
3
  import tensorflow as tf
 
4
 
5
  title = "Welcome on your first sketch recognition app!"
6
 
7
  head = (
8
- "<center>"
9
- "The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
10
- "</center>"
11
  )
12
 
13
  ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
@@ -17,11 +18,21 @@ labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight"
17
 
18
  model = tf.keras.models.load_model("number_recognition_model_colab.keras")
19
 
 
20
  def predict(img):
21
- img = cv2.resize(img, (img_size, img_size))
22
- img = img.reshape(1, img_size, img_size, 1)
23
- preds = model.predict(img)[0]
24
- return {label: float(pred) for label, pred in zip(labels, preds)}
 
 
 
 
 
 
 
 
 
25
 
26
  label = gr.Label(num_top_classes=3)
27
 
 
1
  import cv2
2
  import gradio as gr
3
  import tensorflow as tf
4
+ import numpy as np
5
 
6
  title = "Welcome on your first sketch recognition app!"
7
 
8
  head = (
9
+ "<center>"
10
+ "The robot was trained to classify numbers (from 0 to 9). To test it, write your number in the space provided."
11
+ "</center>"
12
  )
13
 
14
  ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
 
18
 
19
  model = tf.keras.models.load_model("number_recognition_model_colab.keras")
20
 
21
+
22
  def predict(img):
23
+ # Convert the input image to a NumPy array if needed
24
+ if not isinstance(img, np.ndarray):
25
+ img = np.array(img)
26
+
27
+ # Print the type and shape of the image
28
+ print(type(img), img.shape)
29
+
30
+ # Resize the image
31
+ img = cv2.resize(img, (img_size, img_size))
32
+ img = img.reshape(1, img_size, img_size, 1)
33
+ preds = model.predict(img)[0]
34
+ return {label: float(pred) for label, pred in zip(labels, preds)}
35
+
36
 
37
  label = gr.Label(num_top_classes=3)
38