Spaces:
Sleeping
Sleeping
weather app
Browse files
app.py
CHANGED
@@ -1,4 +1,272 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
7 |
+
from sklearn.naive_bayes import GaussianNB
|
8 |
+
from sklearn.tree import DecisionTreeClassifier, plot_tree
|
9 |
+
from sklearn.ensemble import RandomForestClassifier
|
10 |
+
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
|
13 |
+
|
14 |
+
# Page configuration
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Seattle Weather Analysis",
|
17 |
+
page_icon="🌦️",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
# Title and introduction
|
23 |
+
st.title("🌦️ Seattle Weather Machine Learning")
|
24 |
+
st.markdown("""
|
25 |
+
This dashboard analyzes Seattle weather data using different machine learning models.
|
26 |
+
The dataset includes weather attributes and their classification.
|
27 |
+
""")
|
28 |
+
|
29 |
+
def get_dataset_overview(df):
|
30 |
+
"""
|
31 |
+
Generate a comprehensive overview of the dataset
|
32 |
+
"""
|
33 |
+
return {
|
34 |
+
"Total Records": len(df),
|
35 |
+
"Features": len(df.columns) - 1, # Excluding target column
|
36 |
+
"Target Classes": len(df['weather'].unique()),
|
37 |
+
"Missing Values": df.isnull().sum().sum()
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
def load_data():
|
42 |
+
"""Load and preprocess the Seattle weather dataset"""
|
43 |
+
df = pd.read_csv('seattle-weather.csv')
|
44 |
+
df_cleaned = df.drop(columns=['date'])
|
45 |
+
weather_mapping = {'drizzle': 0, 'rain': 1, 'sun': 2, 'snow': 3, 'fog': 4}
|
46 |
+
df_cleaned['weather_encoded'] = df_cleaned['weather'].map(weather_mapping)
|
47 |
+
|
48 |
+
# Split features and target
|
49 |
+
X = df_cleaned.drop(columns=['weather', 'weather_encoded'])
|
50 |
+
y = df_cleaned['weather_encoded']
|
51 |
+
|
52 |
+
# Scale features
|
53 |
+
scaler = StandardScaler()
|
54 |
+
X_scaled = scaler.fit_transform(X)
|
55 |
+
X_scaled = pd.DataFrame(X_scaled, columns=X.columns)
|
56 |
+
|
57 |
+
# Train-test split
|
58 |
+
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
59 |
+
|
60 |
+
return df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping
|
61 |
+
|
62 |
+
|
63 |
+
def plot_weather_distribution(df):
|
64 |
+
"""Plot distribution of weather types"""
|
65 |
+
fig, ax = plt.subplots()
|
66 |
+
sns.countplot(x='weather', data=df, palette='viridis', ax=ax)
|
67 |
+
ax.set_title("Distribution of Weather Types")
|
68 |
+
st.pyplot(fig)
|
69 |
+
|
70 |
+
|
71 |
+
def plot_temp_relationship(df):
|
72 |
+
"""Plot relationship between max and min temperatures"""
|
73 |
+
fig, ax = plt.subplots()
|
74 |
+
sns.scatterplot(x='temp_max', y='temp_min', hue='weather', data=df, ax=ax)
|
75 |
+
ax.set_title("Relationship Between Temp_max and Temp_min")
|
76 |
+
st.pyplot(fig)
|
77 |
+
|
78 |
+
|
79 |
+
def train_models(X_train, X_test, y_train, y_test):
|
80 |
+
"""Train Naive Bayes, Decision Tree, and Random Forest models"""
|
81 |
+
models = {
|
82 |
+
'Naive Bayes': GaussianNB(),
|
83 |
+
'Decision Tree': DecisionTreeClassifier(random_state=42, max_depth=5),
|
84 |
+
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42)
|
85 |
+
}
|
86 |
+
|
87 |
+
results = {}
|
88 |
+
|
89 |
+
for name, model in models.items():
|
90 |
+
model.fit(X_train, y_train)
|
91 |
+
y_pred = model.predict(X_test)
|
92 |
+
accuracy = accuracy_score(y_test, y_pred)
|
93 |
+
cv_scores = cross_val_score(model, X_train, y_train, cv=5)
|
94 |
+
|
95 |
+
results[name] = {
|
96 |
+
'model': model,
|
97 |
+
'accuracy': accuracy,
|
98 |
+
'cv_mean': cv_scores.mean(),
|
99 |
+
'cv_std': cv_scores.std(),
|
100 |
+
'pred': y_pred
|
101 |
+
}
|
102 |
+
|
103 |
+
return results
|
104 |
+
|
105 |
+
|
106 |
+
def plot_confusion_matrix(y_test, y_pred, model_name, weather_mapping):
|
107 |
+
"""Plot confusion matrix for a given model"""
|
108 |
+
fig, ax = plt.subplots()
|
109 |
+
conf_matrix = confusion_matrix(y_test, y_pred)
|
110 |
+
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
|
111 |
+
xticklabels=list(weather_mapping.keys()),
|
112 |
+
yticklabels=list(weather_mapping.keys()), ax=ax)
|
113 |
+
ax.set_title(f"Confusion Matrix - {model_name}")
|
114 |
+
ax.set_xlabel("Predicted")
|
115 |
+
ax.set_ylabel("Actual")
|
116 |
+
st.pyplot(fig)
|
117 |
+
|
118 |
+
|
119 |
+
def plot_feature_importance(model, X, model_name):
|
120 |
+
"""Plot feature importance for a given model"""
|
121 |
+
fig, ax = plt.subplots()
|
122 |
+
feature_importance = pd.DataFrame({
|
123 |
+
'Feature': X.columns,
|
124 |
+
'Importance': model.feature_importances_
|
125 |
+
}).sort_values('Importance', ascending=False)
|
126 |
+
|
127 |
+
sns.barplot(x='Importance', y='Feature', data=feature_importance, palette='viridis', ax=ax)
|
128 |
+
ax.set_title(f"{model_name} Feature Importance")
|
129 |
+
st.pyplot(fig)
|
130 |
+
|
131 |
+
|
132 |
+
def main():
|
133 |
+
|
134 |
+
# Load data
|
135 |
+
df, df_cleaned, X, y, X_train, X_test, y_train, y_test, weather_mapping = load_data()
|
136 |
+
|
137 |
+
# Sidebar menu
|
138 |
+
menu = st.sidebar.selectbox("Choose Analysis", [
|
139 |
+
"Data Overview",
|
140 |
+
"Data Visualization",
|
141 |
+
"Model Training",
|
142 |
+
"Model Comparison"
|
143 |
+
])
|
144 |
+
|
145 |
+
if menu == "Data Overview":
|
146 |
+
st.header("Dataset Overview")
|
147 |
+
|
148 |
+
# Get dataset overview
|
149 |
+
overview = get_dataset_overview(df)
|
150 |
+
|
151 |
+
# Create columns for side-by-side display
|
152 |
+
col1, col2, col3, col4 = st.columns(4)
|
153 |
+
|
154 |
+
# Display overview metrics
|
155 |
+
with col1:
|
156 |
+
st.metric(label="Total Records", value=overview["Total Records"])
|
157 |
+
|
158 |
+
with col2:
|
159 |
+
st.metric(label="Features", value=overview["Features"])
|
160 |
+
|
161 |
+
with col3:
|
162 |
+
st.metric(label="Target Classes", value=overview["Target Classes"])
|
163 |
+
|
164 |
+
with col4:
|
165 |
+
st.metric(label="Missing Values", value=overview["Missing Values"])
|
166 |
+
|
167 |
+
# Display first few rows
|
168 |
+
st.subheader("First Few Rows")
|
169 |
+
st.dataframe(df.head())
|
170 |
+
|
171 |
+
# Weather Type Distribution
|
172 |
+
st.subheader("Weather Type Distribution")
|
173 |
+
weather_dist = df['weather'].value_counts()
|
174 |
+
col1, col2 = st.columns(2)
|
175 |
+
|
176 |
+
with col1:
|
177 |
+
st.dataframe(weather_dist)
|
178 |
+
|
179 |
+
with col2:
|
180 |
+
fig, ax = plt.subplots()
|
181 |
+
weather_dist.plot(kind='pie', autopct='%1.1f%%', ax=ax)
|
182 |
+
ax.set_title("Weather Type Percentage")
|
183 |
+
st.pyplot(fig)
|
184 |
+
|
185 |
+
# Descriptive Statistics
|
186 |
+
st.subheader("Descriptive Statistics")
|
187 |
+
st.dataframe(df.describe())
|
188 |
+
|
189 |
+
elif menu == "Data Visualization":
|
190 |
+
st.header("Weather Data Visualizations")
|
191 |
+
|
192 |
+
viz_option = st.selectbox("Choose Visualization", [
|
193 |
+
"Weather Type Distribution",
|
194 |
+
"Temperature Relationship",
|
195 |
+
"Correlation Heatmap"
|
196 |
+
])
|
197 |
+
|
198 |
+
if viz_option == "Weather Type Distribution":
|
199 |
+
plot_weather_distribution(df)
|
200 |
+
|
201 |
+
elif viz_option == "Temperature Relationship":
|
202 |
+
plot_temp_relationship(df)
|
203 |
+
|
204 |
+
elif viz_option == "Correlation Heatmap":
|
205 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
206 |
+
corr_matrix = pd.concat([X, y], axis=1).corr()
|
207 |
+
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", vmin=-1, vmax=1, ax=ax)
|
208 |
+
ax.set_title("Correlation Heatmap")
|
209 |
+
st.pyplot(fig)
|
210 |
+
|
211 |
+
elif menu == "Model Training":
|
212 |
+
st.header("Machine Learning Models")
|
213 |
+
|
214 |
+
# Train models
|
215 |
+
results = train_models(X_train, X_test, y_train, y_test)
|
216 |
+
|
217 |
+
model_select = st.selectbox("Choose Model", list(results.keys()))
|
218 |
+
|
219 |
+
model_result = results[model_select]
|
220 |
+
|
221 |
+
st.write(f"{model_select} Results:")
|
222 |
+
st.write(f"Test Accuracy: {model_result['accuracy']:.4f}")
|
223 |
+
st.write(f"Cross-Validation Mean Accuracy: {model_result['cv_mean']:.4f}")
|
224 |
+
st.write(f"Cross-Validation Std: {model_result['cv_std']:.4f}")
|
225 |
+
|
226 |
+
# Confusion Matrix
|
227 |
+
plot_confusion_matrix(y_test, model_result['pred'], model_select, weather_mapping)
|
228 |
+
|
229 |
+
# Feature Importance (for Decision Tree and Random Forest)
|
230 |
+
if model_select != 'Naive Bayes':
|
231 |
+
plot_feature_importance(model_result['model'], X, model_select)
|
232 |
+
|
233 |
+
elif menu == "Model Comparison":
|
234 |
+
st.header("Model Performance Comparison")
|
235 |
+
|
236 |
+
# Train models if not already trained
|
237 |
+
results = train_models(X_train, X_test, y_train, y_test)
|
238 |
+
|
239 |
+
# Create comparison DataFrame
|
240 |
+
comparison_df = pd.DataFrame({
|
241 |
+
'Model': list(results.keys()),
|
242 |
+
'Test Accuracy': [results[model]['accuracy'] for model in results],
|
243 |
+
'CV Mean Accuracy': [results[model]['cv_mean'] for model in results],
|
244 |
+
'CV Std': [results[model]['cv_std'] for model in results]
|
245 |
+
})
|
246 |
+
|
247 |
+
st.write("Model Performance Comparison:")
|
248 |
+
st.dataframe(comparison_df)
|
249 |
+
|
250 |
+
# Bar plots for comparison
|
251 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
|
252 |
+
|
253 |
+
# Test Accuracy Comparison
|
254 |
+
sns.barplot(x='Model', y='Test Accuracy', data=comparison_df, ax=ax1)
|
255 |
+
ax1.set_title('Test Accuracy Comparison')
|
256 |
+
ax1.tick_params(axis='x', rotation=45)
|
257 |
+
|
258 |
+
# Cross-validation Comparison
|
259 |
+
sns.barplot(x='Model', y='CV Mean Accuracy', data=comparison_df, ax=ax2)
|
260 |
+
ax2.errorbar(x=range(len(comparison_df)),
|
261 |
+
y=comparison_df['CV Mean Accuracy'],
|
262 |
+
yerr=comparison_df['CV Std'] * 2,
|
263 |
+
fmt='none', color='black', capsize=5)
|
264 |
+
ax2.set_title('Cross-validation Accuracy')
|
265 |
+
ax2.tick_params(axis='x', rotation=45)
|
266 |
+
|
267 |
+
plt.tight_layout()
|
268 |
+
st.pyplot(fig)
|
269 |
+
|
270 |
+
|
271 |
+
if __name__ == "__main__":
|
272 |
+
main()
|