Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,38 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
|
6 |
+
# Load the saved model
|
7 |
+
model = tf.keras.models.load_model('cifar10_cnn_model.keras')
|
8 |
|
9 |
+
# Define the CIFAR-10 class names
|
10 |
+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
11 |
+
|
12 |
+
# Define a function to preprocess the input image
|
13 |
+
def preprocess_image(image):
|
14 |
+
image = image.resize((32, 32)) # Resize image to 32x32
|
15 |
+
image = np.array(image) / 255.0 # Normalize pixel values
|
16 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
+
return image
|
18 |
+
|
19 |
+
# Define the prediction function
|
20 |
+
def classify_image(image):
|
21 |
+
preprocessed_image = preprocess_image(image)
|
22 |
+
predictions = model.predict(preprocessed_image)
|
23 |
+
predicted_class = class_names[np.argmax(predictions)]
|
24 |
+
confidence = np.max(predictions)
|
25 |
+
return f"Prediction: {predicted_class} (Confidence: {confidence:.2f})"
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=classify_image,
|
30 |
+
inputs=gr.Image(type="pil"),
|
31 |
+
outputs="text",
|
32 |
+
title="CIFAR-10 Image Classifier",
|
33 |
+
description="Upload an image of a CIFAR-10 category (e.g., airplane, cat, dog), and the model will classify it."
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the app
|
37 |
+
if __name__ == "__main__":
|
38 |
+
interface.launch()
|