File size: 4,548 Bytes
09fd315 10e9b7d 3c4371f 09fd315 10e9b7d 151e8da 09fd315 151e8da 09fd315 39f4053 09fd315 39f4053 09fd315 4021bf3 3c4371f 09fd315 7e4a06b 09fd315 952c324 09fd315 e80aab9 ed82cd0 09fd315 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 09fd315 e80aab9 09fd315 e80aab9 09fd315 e80aab9 3c4371f 7d65c66 3c4371f 09fd315 7d65c66 3c4371f 09fd315 3c4371f 7d65c66 09fd315 7d65c66 09fd315 7d65c66 3c4371f 31243f4 09fd315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry import trace
from evaluator import Evaluator
from runner import Runner
from settings import Settings
import os
import pandas as pd
import gradio as gr
import logging
logging.basicConfig(level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
settings = Settings()
evaluator = Evaluator(settings)
runner = Runner(settings)
# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
# Set the global default tracer provider
trace.set_tracer_provider(trace_provider)
tracer = trace.get_tracer(__name__)
# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
def run(test_mode=False) -> pd.DataFrame:
if test_mode:
questions = [evaluator.get_one_question()]
# questions = [get_one_question(task_id='8e867cd7-cff9-4e6c-867a-ff5ddc2550be')]
# questions = [get_one_question('3f57289b-8c60-48be-bd80-01f8099ca449')]
# questions = [get_one_question('cca530fc-4052-43b2-b130-b30968d8aa44')]
else:
questions = evaluator.get_questions()
return runner.run_agent(questions)
def submit():
evaluator.submit_answers()
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_one_button = gr.Button("Get One Answer")
run_all_button = gr.Button("Run Full Evaluation")
submit_button = gr.Button("Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers", wrap=True)
run_one_button.click(
fn=run, inputs=[gr.Checkbox(value=True, visible=False)],
outputs=[results_table]
)
run_all_button.click(
fn=run, inputs=[gr.Checkbox(value=False, visible=False)],
outputs=[results_table]
)
submit_button.click(
fn=evaluator.get_one_question,
outputs=[status_output]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(
f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|