File size: 4,844 Bytes
09fd315
 
 
 
 
9ff29f9
 
09fd315
10e9b7d
3c4371f
09fd315
 
 
 
 
9ff29f9
 
10e9b7d
151e8da
09fd315
 
151e8da
09fd315
 
39f4053
09fd315
 
 
39f4053
09fd315
 
4021bf3
b8517f0
 
 
 
 
7e4a06b
b8517f0
 
 
 
 
 
 
 
 
9ff29f9
b8517f0
 
 
 
 
 
 
 
 
9ff29f9
ed82cd0
09fd315
b8517f0
 
9ff29f9
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
b8517f0
 
 
e514fd7
 
 
b8517f0
 
 
e514fd7
e80aab9
 
7e4a06b
e80aab9
09fd315
 
 
e80aab9
09fd315
 
 
 
e80aab9
09fd315
b8517f0
09fd315
 
b8517f0
09fd315
 
9ff29f9
09fd315
e80aab9
 
 
3c4371f
7d65c66
3c4371f
09fd315
7d65c66
3c4371f
 
09fd315
 
3c4371f
7d65c66
 
09fd315
7d65c66
 
09fd315
 
7d65c66
 
 
3c4371f
 
31243f4
09fd315
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry import trace
# from evaluator import Evaluator
# from runner import Runner
from settings import Settings
import os
import pandas as pd
import gradio as gr
import logging
logging.basicConfig(level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
settings = Settings()
# evaluator = Evaluator(settings)
# runner = Runner(settings)


# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()

# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))

# Set the global default tracer provider
trace.set_tracer_provider(trace_provider)
tracer = trace.get_tracer(__name__)

# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)

def user_logged_in(profile: gr.OAuthProfile):
    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
        return True
    else:
        print("User not logged in.")
        return False
        
LOGIN_MESSAGE = "Please Login to Hugging Face with the button."

def run_one(profile: gr.OAuthProfile | None) -> pd.DataFrame:
    if not user_logged_in(profile): 
        return LOGIN_MESSAGE
    # questions = [evaluator.get_one_question()]
    # return runner.run_agent(questions)
    logger.info("test_mode")
    return pd.DataFrame(columns=['task_id', 'question', 'answer'])
    
def run_all(profile: gr.OAuthProfile | None) -> pd.DataFrame:
    if not user_logged_in:
        return LOGIN_MESSAGE
    # questions = evaluator.get_questions()
    # return runner.run_agent(questions)
    logger.info("not test_mode")
    return pd.DataFrame(columns=['task_id', 'question', 'answer'])

def submit():
    if not user_logged_in:
        return LOGIN_MESSAGE
    # evaluator.submit_answers()
    logger.info("submit")


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Click 'Get One Answer' to fetch a ranodom question, run the agent, and see the question-answer pair below
        2.  Click 'Run Full Evaluation' to fetch all question, run the agent, and see the question-answer pairs below
        3.  Click 'Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking 'Submit All Answers', it can take quite some time (this is the time for the agent to go through all the questions).
        The agent will run questions in parallel for the full evaluation, making observability tools a must. 
        The submit button will use the most recent agent answers cached in the space.
        """
    )

    gr.LoginButton()

    run_one_button = gr.Button("Get One Answer")
    run_all_button = gr.Button("Run Full Evaluation")
    submit_button = gr.Button("Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(
        label="Questions and Agent Answers", wrap=True)

    run_one_button.click(
        fn=run_one, outputs=[results_table]
    )
    run_all_button.click(
        fn=run_all, outputs=[results_table]
    )
    submit_button.click(
        fn=submit,
        outputs=[status_output]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(
            f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(
            f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)