File size: 4,844 Bytes
09fd315 9ff29f9 09fd315 10e9b7d 3c4371f 09fd315 9ff29f9 10e9b7d 151e8da 09fd315 151e8da 09fd315 39f4053 09fd315 39f4053 09fd315 4021bf3 b8517f0 7e4a06b b8517f0 9ff29f9 b8517f0 9ff29f9 ed82cd0 09fd315 b8517f0 9ff29f9 e80aab9 31243f4 0ee0419 e514fd7 b8517f0 e514fd7 b8517f0 e514fd7 e80aab9 7e4a06b e80aab9 09fd315 e80aab9 09fd315 e80aab9 09fd315 b8517f0 09fd315 b8517f0 09fd315 9ff29f9 09fd315 e80aab9 3c4371f 7d65c66 3c4371f 09fd315 7d65c66 3c4371f 09fd315 3c4371f 7d65c66 09fd315 7d65c66 09fd315 7d65c66 3c4371f 31243f4 09fd315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry import trace
# from evaluator import Evaluator
# from runner import Runner
from settings import Settings
import os
import pandas as pd
import gradio as gr
import logging
logging.basicConfig(level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
settings = Settings()
# evaluator = Evaluator(settings)
# runner = Runner(settings)
# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
# Set the global default tracer provider
trace.set_tracer_provider(trace_provider)
tracer = trace.get_tracer(__name__)
# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
def user_logged_in(profile: gr.OAuthProfile):
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
return True
else:
print("User not logged in.")
return False
LOGIN_MESSAGE = "Please Login to Hugging Face with the button."
def run_one(profile: gr.OAuthProfile | None) -> pd.DataFrame:
if not user_logged_in(profile):
return LOGIN_MESSAGE
# questions = [evaluator.get_one_question()]
# return runner.run_agent(questions)
logger.info("test_mode")
return pd.DataFrame(columns=['task_id', 'question', 'answer'])
def run_all(profile: gr.OAuthProfile | None) -> pd.DataFrame:
if not user_logged_in:
return LOGIN_MESSAGE
# questions = evaluator.get_questions()
# return runner.run_agent(questions)
logger.info("not test_mode")
return pd.DataFrame(columns=['task_id', 'question', 'answer'])
def submit():
if not user_logged_in:
return LOGIN_MESSAGE
# evaluator.submit_answers()
logger.info("submit")
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Click 'Get One Answer' to fetch a ranodom question, run the agent, and see the question-answer pair below
2. Click 'Run Full Evaluation' to fetch all question, run the agent, and see the question-answer pairs below
3. Click 'Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking 'Submit All Answers', it can take quite some time (this is the time for the agent to go through all the questions).
The agent will run questions in parallel for the full evaluation, making observability tools a must.
The submit button will use the most recent agent answers cached in the space.
"""
)
gr.LoginButton()
run_one_button = gr.Button("Get One Answer")
run_all_button = gr.Button("Run Full Evaluation")
submit_button = gr.Button("Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers", wrap=True)
run_one_button.click(
fn=run_one, outputs=[results_table]
)
run_all_button.click(
fn=run_all, outputs=[results_table]
)
submit_button.click(
fn=submit,
outputs=[status_output]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(
f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|