File size: 5,165 Bytes
09fd315 476b409 09fd315 84a5ab5 10e9b7d 3c4371f 09fd315 476b409 10e9b7d 151e8da 09fd315 151e8da 09fd315 39f4053 09fd315 39f4053 09fd315 4021bf3 b8517f0 324b202 2e12a0d a4d9c5d 52fd97d a4d9c5d 84a5ab5 a4d9c5d 84a5ab5 a4d9c5d 84a5ab5 a4d9c5d 2e12a0d a4d9c5d 324b202 b8517f0 2e12a0d 324b202 ed82cd0 ba418c2 2e12a0d b8517f0 e80aab9 31243f4 0ee0419 e514fd7 64e1e58 e514fd7 324b202 476b409 324b202 e514fd7 e80aab9 7e4a06b e80aab9 09fd315 64e1e58 e80aab9 09fd315 e80aab9 09fd315 324b202 09fd315 324b202 09fd315 ba418c2 e80aab9 3c4371f 7d65c66 3c4371f 09fd315 7d65c66 3c4371f 09fd315 3c4371f 7d65c66 09fd315 7d65c66 09fd315 7d65c66 3c4371f 31243f4 09fd315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry import trace
from evaluator import Evaluator
from runner import Runner
from settings import Settings
import time
import os
import pandas as pd
import gradio as gr
import logging
logging.basicConfig(level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
settings = Settings()
evaluator = Evaluator(settings)
runner = Runner(settings)
# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
# Set the global default tracer provider
trace.set_tracer_provider(trace_provider)
tracer = trace.get_tracer(__name__)
# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
LOGIN_MESSAGE = "Please Login to Hugging Face with the button."
EMPTY_RESULTS_TABLE = pd.DataFrame(columns=['task_id', 'question', 'answer'])
def _format_elapsed_time(elapsed_time):
minutes = int(elapsed_time // 60) # Get the whole number of minutes
seconds = elapsed_time % 60 # Get the remaining seconds
if minutes > 0:
return f"Elapsed time: {minutes} minutes {seconds:.2f} seconds"
else:
return f"Elapsed time: {seconds:.2f} seconds"
def _run(questions: list, username: str) -> pd.DataFrame:
start_time = time.time()
question_answer_pairs = runner.run_agent(questions, username)
end_time = time.time()
message = f"Complete. {_format_elapsed_time(end_time - start_time)}"
return message, question_answer_pairs
def run_one(profile: gr.OAuthProfile | None) -> pd.DataFrame:
if profile:
return _run([evaluator.get_one_question()], profile.username)
else:
return LOGIN_MESSAGE, EMPTY_RESULTS_TABLE
def run_all(profile: gr.OAuthProfile | None) -> pd.DataFrame:
if profile:
return _run(evaluator.get_questions(), profile.username)
else:
return LOGIN_MESSAGE, EMPTY_RESULTS_TABLE
def submit(profile: gr.OAuthProfile | None) -> str:
if profile:
return evaluator.submit_answers(profile.username)
else:
return LOGIN_MESSAGE
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Get One Answer' to run the agent on a random question or 'Get All Answers' to run all.
3. Click 'Submit Answers' to submit answers for evaluation. This will NOT submit your HF username.
---
**Disclaimers:**
Once clicking 'Get All Answers', it can take quite some time (this is the time for the agent to go through all 20 questions).
The agent(s) will run question tasks in parallel making the logs hard to follow. Langfuse instrumentation has been configured.
The 'Submit All Answers' button will use the most recent agent answers cached in the space for your username.
"""
)
gr.LoginButton()
run_one_button = gr.Button("Get One Answer")
run_all_button = gr.Button("Get All Answers")
submit_button = gr.Button("Submit Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(
label="Questions and Agent Answers", wrap=True)
run_one_button.click(
fn=run_one, outputs=[status_output, results_table]
)
run_all_button.click(
fn=run_all, outputs=[status_output, results_table]
)
submit_button.click(
fn=submit, outputs=[status_output]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(
f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|