from opentelemetry.sdk.trace.export import SimpleSpanProcessor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from openinference.instrumentation.smolagents import SmolagentsInstrumentor from opentelemetry.sdk.trace import TracerProvider from opentelemetry import trace from evaluator import Evaluator from runner import Runner from settings import Settings import time import os import pandas as pd import gradio as gr import logging logging.basicConfig(level=logging.INFO, force=True) logger = logging.getLogger(__name__) settings = Settings() evaluator = Evaluator(settings) runner = Runner(settings) # Create a TracerProvider for OpenTelemetry trace_provider = TracerProvider() # Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) # Set the global default tracer provider trace.set_tracer_provider(trace_provider) tracer = trace.get_tracer(__name__) # Instrument smolagents with the configured provider SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) LOGIN_MESSAGE = "Please Login to Hugging Face with the button." EMPTY_RESULTS_TABLE = pd.DataFrame(columns=['task_id', 'question', 'answer']) def _format_elapsed_time(elapsed_time): minutes = int(elapsed_time // 60) # Get the whole number of minutes seconds = elapsed_time % 60 # Get the remaining seconds if minutes > 0: return f"Elapsed time: {minutes} minutes {seconds:.2f} seconds" else: return f"Elapsed time: {seconds:.2f} seconds" def _run(questions: list, username: str) -> pd.DataFrame: start_time = time.time() question_answer_pairs = runner.run_agent(questions, username) end_time = time.time() message = f"Complete. {_format_elapsed_time(end_time - start_time)}" return message, question_answer_pairs def run_one(profile: gr.OAuthProfile | None) -> pd.DataFrame: if profile: return _run([evaluator.get_one_question()], profile.username) else: return LOGIN_MESSAGE, EMPTY_RESULTS_TABLE def run_all(profile: gr.OAuthProfile | None) -> pd.DataFrame: if profile: return _run(evaluator.get_questions(), profile.username) else: return LOGIN_MESSAGE, EMPTY_RESULTS_TABLE def submit(profile: gr.OAuthProfile | None) -> str: if profile: return evaluator.submit_answers(profile.username) else: return LOGIN_MESSAGE # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Log in to your Hugging Face account using the button below. 2. Click 'Get One Answer' to run the agent on a random question or 'Get All Answers' to run all. 3. Click 'Submit Answers' to submit answers for evaluation. This will NOT submit your HF username. --- **Disclaimers:** Once clicking 'Get All Answers', it can take quite some time (this is the time for the agent to go through all 20 questions). The agent(s) will run question tasks in parallel making the logs hard to follow. Langfuse instrumentation has been configured. The 'Submit All Answers' button will use the most recent agent answers cached in the space for your username. """ ) gr.LoginButton() run_one_button = gr.Button("Get One Answer") run_all_button = gr.Button("Get All Answers") submit_button = gr.Button("Submit Answers") status_output = gr.Textbox( label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame( label="Questions and Agent Answers", wrap=True) run_one_button.click( fn=run_one, outputs=[status_output, results_table] ) run_all_button.click( fn=run_all, outputs=[status_output, results_table] ) submit_button.click( fn=submit, outputs=[status_output] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print( f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print( f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)