Update app.R
Browse files
app.R
CHANGED
@@ -1,145 +1,122 @@
|
|
1 |
-
#
|
2 |
|
|
|
3 |
library(shiny)
|
4 |
-
library(
|
5 |
-
library(
|
6 |
-
library(
|
|
|
7 |
|
|
|
8 |
ui <- fluidPage(
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
sidebarLayout(
|
12 |
sidebarPanel(
|
13 |
-
|
14 |
selectInput(
|
15 |
inputId = "metric",
|
16 |
-
label = "
|
17 |
-
choices = c(
|
18 |
-
|
19 |
-
"Representation Gap",
|
20 |
-
"Ethnicity",
|
21 |
-
"Gender",
|
22 |
-
"Religion",
|
23 |
-
"Language"
|
24 |
-
),
|
25 |
selected = "Overall"
|
26 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
checkboxInput(
|
28 |
-
inputId = "
|
29 |
-
label = "
|
30 |
value = TRUE
|
31 |
-
),
|
32 |
-
hr(),
|
33 |
-
sliderInput(
|
34 |
-
inputId = "top_n",
|
35 |
-
label = "Number of Countries to Display in Plot:",
|
36 |
-
min = 5,
|
37 |
-
max = 50,
|
38 |
-
value = 10,
|
39 |
-
step = 1
|
40 |
)
|
41 |
),
|
42 |
-
|
|
|
43 |
mainPanel(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
DTOutput("data_table")
|
52 |
-
),
|
53 |
-
tabPanel(
|
54 |
-
title = "Summary",
|
55 |
-
verbatimTextOutput("summary_text")
|
56 |
-
)
|
57 |
)
|
58 |
)
|
59 |
)
|
60 |
)
|
61 |
|
|
|
62 |
server <- function(input, output, session) {
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
67 |
})
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
req(
|
72 |
-
|
73 |
-
df <- tibble::as_tibble(data_raw())
|
74 |
-
|
75 |
-
# Ensure the selected metric is numeric for plotting
|
76 |
-
# (This is typically already numeric, but we can do a safe check.)
|
77 |
-
# Also handle potential issues with missing values.
|
78 |
-
df <- df %>%
|
79 |
-
mutate(
|
80 |
-
across(all_of(input$metric), as.numeric)
|
81 |
-
) %>%
|
82 |
-
filter(!is.na(.data[[input$metric]]))
|
83 |
-
|
84 |
-
# Sort ascending or descending
|
85 |
-
if (input$sort_desc) {
|
86 |
-
df <- df %>% arrange(desc(.data[[input$metric]]))
|
87 |
-
} else {
|
88 |
-
df <- df %>% arrange(.data[[input$metric]])
|
89 |
-
}
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
})
|
96 |
-
|
97 |
-
# Render bar plot
|
98 |
-
output$
|
99 |
-
|
100 |
|
101 |
-
#
|
102 |
-
|
103 |
-
|
|
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
geom_col(fill = "steelblue") +
|
107 |
-
coord_flip() +
|
108 |
labs(
|
109 |
x = "Country",
|
110 |
-
y =
|
111 |
-
title = paste("
|
112 |
) +
|
113 |
theme_minimal(base_size = 14)
|
114 |
})
|
115 |
|
116 |
-
# Render data table
|
117 |
-
output$
|
118 |
-
|
119 |
datatable(
|
120 |
-
|
121 |
options = list(pageLength = 10, autoWidth = TRUE),
|
122 |
-
filter = "top",
|
123 |
rownames = FALSE
|
124 |
)
|
125 |
})
|
126 |
-
|
127 |
-
# Render summary statistics text for the selected metric
|
128 |
-
output$summary_text <- renderPrint({
|
129 |
-
df <- data_raw()
|
130 |
-
req(df)
|
131 |
-
# Convert the chosen metric to numeric if needed
|
132 |
-
df[[input$metric]] <- suppressWarnings(as.numeric(df[[input$metric]]))
|
133 |
-
|
134 |
-
valid_metric <- df[[input$metric]][!is.na(df[[input$metric]])]
|
135 |
-
if (length(valid_metric) == 0) {
|
136 |
-
cat("No valid numeric data for the selected metric.")
|
137 |
-
} else {
|
138 |
-
summary_stats <- summary(valid_metric)
|
139 |
-
cat("Summary of", input$metric, "across all countries:\n")
|
140 |
-
print(summary_stats)
|
141 |
-
}
|
142 |
-
})
|
143 |
}
|
144 |
|
145 |
-
|
|
|
|
1 |
+
# app.R
|
2 |
|
3 |
+
# Load necessary libraries
|
4 |
library(shiny)
|
5 |
+
library(readr) # for reading CSVs
|
6 |
+
library(dplyr) # for data manipulation
|
7 |
+
library(ggplot2) # for plotting
|
8 |
+
library(DT) # for rendering data tables interactively
|
9 |
|
10 |
+
# Define UI
|
11 |
ui <- fluidPage(
|
12 |
+
|
13 |
+
# Title of the application
|
14 |
+
titlePanel("Country Representation Explorer"),
|
15 |
+
|
16 |
+
# Sidebar layout
|
17 |
sidebarLayout(
|
18 |
sidebarPanel(
|
19 |
+
# Input: Select which representation metric to visualize
|
20 |
selectInput(
|
21 |
inputId = "metric",
|
22 |
+
label = "Choose representation metric:",
|
23 |
+
choices = c("Overall", "Representation Gap", "Ethnicity",
|
24 |
+
"Gender", "Religion", "Language"),
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
selected = "Overall"
|
26 |
),
|
27 |
+
|
28 |
+
# Input: Numeric slider to filter based on the chosen metric
|
29 |
+
sliderInput(
|
30 |
+
inputId = "metricRange",
|
31 |
+
label = "Filter countries by metric range:",
|
32 |
+
min = -10, # set a plausible minimum range
|
33 |
+
max = 10, # set a plausible maximum range
|
34 |
+
value = c(-10, 10),
|
35 |
+
step = 0.1
|
36 |
+
),
|
37 |
+
|
38 |
+
# Checkbox to toggle data table
|
39 |
checkboxInput(
|
40 |
+
inputId = "showDataTable",
|
41 |
+
label = "Show data table of filtered results",
|
42 |
value = TRUE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
),
|
45 |
+
|
46 |
+
# Main panel to display outputs
|
47 |
mainPanel(
|
48 |
+
# Output: Bar plot
|
49 |
+
plotOutput("repPlot", height = "600px"),
|
50 |
+
|
51 |
+
# Output: Data table (shown only when checkbox is TRUE)
|
52 |
+
conditionalPanel(
|
53 |
+
condition = "input.showDataTable == true",
|
54 |
+
DTOutput("tableOut")
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
)
|
57 |
)
|
58 |
)
|
59 |
|
60 |
+
# Define server logic
|
61 |
server <- function(input, output, session) {
|
62 |
+
|
63 |
+
# Read in the CSV
|
64 |
+
# Make sure your 'CountryRepresentationRankings.csv' file is in the same folder as this script
|
65 |
+
full_data <- reactive({
|
66 |
+
read_csv("CountryRepresentationRankings.csv", show_col_types = FALSE)
|
67 |
})
|
68 |
|
69 |
+
# Reactive subset of the data based on the metric range selected
|
70 |
+
filtered_data <- reactive({
|
71 |
+
req(input$metricRange)
|
72 |
+
req(input$metric)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Ensure data is loaded
|
75 |
+
data <- full_data()
|
76 |
|
77 |
+
# Filter based on user-selected metric range
|
78 |
+
data %>%
|
79 |
+
filter(
|
80 |
+
# get() dynamically selects the column name based on input$metric
|
81 |
+
get(input$metric) >= input$metricRange[1] &
|
82 |
+
get(input$metric) <= input$metricRange[2]
|
83 |
+
)
|
84 |
})
|
85 |
+
|
86 |
+
# Render the bar plot
|
87 |
+
output$repPlot <- renderPlot({
|
88 |
+
data_for_plot <- filtered_data()
|
89 |
|
90 |
+
# Proceed only if there's data to plot
|
91 |
+
validate(
|
92 |
+
need(nrow(data_for_plot) > 0, "No data available within this range.")
|
93 |
+
)
|
94 |
|
95 |
+
# Order countries by the chosen metric
|
96 |
+
ggplot(data_for_plot, aes(
|
97 |
+
x = reorder(Country, get(input$metric)),
|
98 |
+
y = get(input$metric)
|
99 |
+
)) +
|
100 |
geom_col(fill = "steelblue") +
|
101 |
+
coord_flip() + # Flip coordinates for easier reading of country names
|
102 |
labs(
|
103 |
x = "Country",
|
104 |
+
y = paste(input$metric, "Index"),
|
105 |
+
title = paste("Countries by", input$metric, "Representation")
|
106 |
) +
|
107 |
theme_minimal(base_size = 14)
|
108 |
})
|
109 |
|
110 |
+
# Render the data table (only if checkbox is selected)
|
111 |
+
output$tableOut <- renderDT({
|
112 |
+
data_for_table <- filtered_data()
|
113 |
datatable(
|
114 |
+
data_for_table,
|
115 |
options = list(pageLength = 10, autoWidth = TRUE),
|
|
|
116 |
rownames = FALSE
|
117 |
)
|
118 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
}
|
120 |
|
121 |
+
# Create Shiny app
|
122 |
+
shinyApp(ui, server)
|