Update app.R
Browse files
app.R
CHANGED
@@ -1,122 +1,112 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
-
#
|
4 |
library(shiny)
|
5 |
-
library(
|
6 |
-
library(dplyr)
|
7 |
-
library(
|
8 |
-
library(
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
sidebarPanel(
|
19 |
-
# Input: Select which representation metric to visualize
|
20 |
-
selectInput(
|
21 |
-
inputId = "metric",
|
22 |
-
label = "Choose representation metric:",
|
23 |
-
choices = c("Overall", "Representation Gap", "Ethnicity",
|
24 |
-
"Gender", "Religion", "Language"),
|
25 |
-
selected = "Overall"
|
26 |
-
),
|
27 |
-
|
28 |
-
# Input: Numeric slider to filter based on the chosen metric
|
29 |
-
sliderInput(
|
30 |
-
inputId = "metricRange",
|
31 |
-
label = "Filter countries by metric range:",
|
32 |
-
min = -10, # set a plausible minimum range
|
33 |
-
max = 10, # set a plausible maximum range
|
34 |
-
value = c(-10, 10),
|
35 |
-
step = 0.1
|
36 |
-
),
|
37 |
-
|
38 |
-
# Checkbox to toggle data table
|
39 |
-
checkboxInput(
|
40 |
-
inputId = "showDataTable",
|
41 |
-
label = "Show data table of filtered results",
|
42 |
-
value = TRUE
|
43 |
-
)
|
44 |
),
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
)
|
57 |
)
|
58 |
)
|
59 |
|
60 |
-
#
|
|
|
|
|
61 |
server <- function(input, output, session) {
|
62 |
|
63 |
-
# Read
|
64 |
-
#
|
65 |
-
|
66 |
-
read_csv("CountryRepresentationRankings.csv"
|
|
|
|
|
|
|
67 |
})
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
get(input$metric) >= input$metricRange[1] &
|
82 |
-
get(input$metric) <= input$metricRange[2]
|
83 |
-
)
|
84 |
})
|
85 |
|
86 |
-
#
|
87 |
-
output$
|
88 |
-
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
|
95 |
-
#
|
96 |
-
ggplot(
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
geom_col(fill = "steelblue") +
|
101 |
-
coord_flip() + # Flip coordinates for easier reading of country names
|
102 |
labs(
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
) +
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
data_for_table <- filtered_data()
|
113 |
-
datatable(
|
114 |
-
data_for_table,
|
115 |
-
options = list(pageLength = 10, autoWidth = TRUE),
|
116 |
-
rownames = FALSE
|
117 |
-
)
|
118 |
})
|
119 |
}
|
120 |
|
121 |
-
#
|
122 |
-
|
|
|
|
|
|
1 |
+
# =============================
|
2 |
+
# Global options & libraries
|
3 |
+
# =============================
|
4 |
library(shiny)
|
5 |
+
library(shinydashboard) # or bslib / thematic, if desired
|
6 |
+
library(dplyr)
|
7 |
+
library(readr)
|
8 |
+
library(sf)
|
9 |
+
library(cartogram)
|
10 |
+
library(ggplot2)
|
11 |
+
library(rnaturalearth)
|
12 |
+
library(rnaturalearthdata)
|
13 |
|
14 |
+
# =============================
|
15 |
+
# UI
|
16 |
+
# =============================
|
17 |
+
ui <- dashboardPage(
|
18 |
+
dashboardHeader(title = "Country Representation Rankings"),
|
19 |
+
dashboardSidebar(
|
20 |
+
sidebarMenu(
|
21 |
+
menuItem("Cartogram", tabName = "cartogramTab", icon = icon("globe"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
),
|
23 |
+
# User input: which representation index to display
|
24 |
+
selectInput(
|
25 |
+
inputId = "indexChoice",
|
26 |
+
label = "Select Representation Index:",
|
27 |
+
choices = c("Overall", "Representation Gap", "Ethnicity",
|
28 |
+
"Gender", "Religion", "Language"),
|
29 |
+
selected = "Overall"
|
30 |
+
)
|
31 |
+
),
|
32 |
+
dashboardBody(
|
33 |
+
tabItems(
|
34 |
+
tabItem(
|
35 |
+
tabName = "cartogramTab",
|
36 |
+
fluidRow(
|
37 |
+
box(
|
38 |
+
width = 12,
|
39 |
+
plotOutput("cartogramPlot", height = "600px")
|
40 |
+
)
|
41 |
+
)
|
42 |
)
|
43 |
)
|
44 |
)
|
45 |
)
|
46 |
|
47 |
+
# =============================
|
48 |
+
# SERVER
|
49 |
+
# =============================
|
50 |
server <- function(input, output, session) {
|
51 |
|
52 |
+
# ---- Read CSV data ----
|
53 |
+
# Modify the path to your CSV as needed
|
54 |
+
rankings_data <- reactive({
|
55 |
+
read_csv("CountryRepresentationRankings.csv") %>%
|
56 |
+
# Make sure "Country" and "Population" columns are present:
|
57 |
+
# e.g., rename columns if your CSV differs
|
58 |
+
rename(name = Country) # rename to match natural earth "name" field
|
59 |
})
|
60 |
|
61 |
+
# ---- Read/prepare world map shapefile ----
|
62 |
+
world_sf <- reactive({
|
63 |
+
# Download a simple polygons set
|
64 |
+
ne_countries(scale = "medium", returnclass = "sf") %>%
|
65 |
+
select(name, iso_a3, geometry) # keep only relevant columns
|
66 |
+
})
|
67 |
+
|
68 |
+
# ---- Join data and create cartogram ----
|
69 |
+
cartogram_sf <- reactive({
|
70 |
+
# Join your data on "name"
|
71 |
+
merged_sf <- world_sf() %>%
|
72 |
+
left_join(rankings_data(), by = "name")
|
73 |
|
74 |
+
# cartogram_cont scales polygon area proportionally to your "Population" column
|
75 |
+
# If you do NOT have a "Population" column, you could use "pop_est" from
|
76 |
+
# the natural earth data or from your CSV if provided.
|
77 |
+
cartogram_cont(merged_sf, weight = "Population", prepare = TRUE)
|
|
|
|
|
|
|
78 |
})
|
79 |
|
80 |
+
# ---- Plot output ----
|
81 |
+
output$cartogramPlot <- renderPlot({
|
82 |
+
req(input$indexChoice)
|
83 |
|
84 |
+
# The user’s chosen index to display
|
85 |
+
index_col <- input$indexChoice
|
86 |
+
|
87 |
+
# Prepare the cartogram for plotting
|
88 |
+
plot_data <- cartogram_sf()
|
89 |
|
90 |
+
# Basic ggplot: color fill by the chosen index
|
91 |
+
ggplot(plot_data) +
|
92 |
+
geom_sf(aes_string(fill = index_col), color = "grey20", size = 0.1) +
|
93 |
+
scale_fill_viridis_c(option = "D", na.value = "white") +
|
94 |
+
theme_minimal(base_size = 14) +
|
|
|
|
|
95 |
labs(
|
96 |
+
fill = paste(index_col, "Index"),
|
97 |
+
title = "Country Representation Rankings",
|
98 |
+
subtitle = "Cartogram sized by Population, colored by selected Index",
|
99 |
+
caption = "Source: Global Leadership Project (GLP)"
|
100 |
) +
|
101 |
+
theme(
|
102 |
+
plot.title = element_text(face = "bold"),
|
103 |
+
axis.text = element_blank(),
|
104 |
+
axis.ticks = element_blank()
|
105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
})
|
107 |
}
|
108 |
|
109 |
+
# =============================
|
110 |
+
# Launch the Shiny App
|
111 |
+
# =============================
|
112 |
+
shinyApp(ui = ui, server = server)
|