Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from datasets import load_dataset | |
# Load the Spider dataset | |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") | |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") | |
def generate_sql_from_user_input(query): | |
# Generate SQL for the user's query | |
input_text = "translate English to SQL: " + query | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True) | |
outputs = model.generate(**inputs, max_length=512) | |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return sql_query | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_sql_from_user_input, | |
inputs=gr.Textbox(label="Enter your natural language query"), | |
outputs=gr.Textbox(label="Generated SQL Query"), | |
title="NL to SQL with T5 using Spider Dataset", | |
description="This model generates an SQL query for your natural language input based on the Spider dataset." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |