Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final") | |
| # Initialize the pipeline | |
| nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer) | |
| def generate_sql(query): | |
| # Use the model to generate SQL from the natural language query | |
| results = nl2sql_pipeline(query) | |
| # Extract the first result (highest likelihood) | |
| sql_query = results[0]['generated_text'] | |
| return sql_query | |
| # Create a Gradio interface | |
| interface = gr.Interface( | |
| fn=generate_sql, | |
| inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your natural language query here..."), | |
| outputs="text", | |
| title="NL to SQL with Picard", | |
| description="This model converts natural language queries into SQL. It's based on the Spider dataset. Enter a query to get started!" | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch() | |