HusnaManakkot commited on
Commit
1f0417a
·
verified ·
1 Parent(s): 4f40159

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -12
app.py CHANGED
@@ -5,29 +5,49 @@ from datasets import load_dataset
5
  # Load the Spider dataset
6
  spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
7
 
 
 
 
 
 
 
 
 
 
 
8
  # Load tokenizer and model
9
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
10
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
11
 
12
- def generate_sql_from_spider_query(index):
13
- # Get the natural language query from the Spider dataset
14
- if index < 0 or index >= len(spider_dataset):
15
- return "Invalid index. Please enter a value between 0 and {}.".format(len(spider_dataset) - 1)
 
 
 
 
 
 
16
 
17
- nl_query = spider_dataset[index]['question']
18
- input_text = "translate English to SQL: " + nl_query
 
19
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
20
  outputs = model.generate(**inputs, max_length=512)
21
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
- return {"Natural Language Query": nl_query, "Generated SQL Query": sql_query}
 
 
 
23
 
24
  # Create a Gradio interface
25
  interface = gr.Interface(
26
- fn=generate_sql_from_spider_query,
27
- inputs=gr.Number(label="Enter the index of the query in the Spider dataset (0 to {})".format(len(spider_dataset) - 1)),
28
- outputs=[gr.Textbox(label="Natural Language Query"), gr.Textbox(label="Generated SQL Query")],
29
- title="NL to SQL using Spider Dataset",
30
- description="This interface generates an SQL query from a natural language query in the Spider dataset."
31
  )
32
 
33
  # Launch the app
 
5
  # Load the Spider dataset
6
  spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
7
 
8
+ # Extract schema information from the dataset
9
+ db_table_names = set()
10
+ column_names = set()
11
+ for item in spider_dataset:
12
+ db_id = item['db_id']
13
+ for table in item['db']['table_names_original']:
14
+ db_table_names.add((db_id, table))
15
+ for column in item['db']['column_names_original']:
16
+ column_names.add(column[1])
17
+
18
  # Load tokenizer and model
19
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
20
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
21
 
22
+ def post_process_sql_query(sql_query):
23
+ # Modify the SQL query to match the dataset's schema
24
+ for db_id, table_name in db_table_names:
25
+ if "TABLE" in sql_query:
26
+ sql_query = sql_query.replace("TABLE", table_name)
27
+ break # Assuming only one table is referenced in the query
28
+ for column_name in column_names:
29
+ if "COLUMN" in sql_query:
30
+ sql_query = sql_query.replace("COLUMN", column_name, 1)
31
+ return sql_query
32
 
33
+ def generate_sql_from_user_input(query):
34
+ # Generate SQL for the user's query
35
+ input_text = "translate English to SQL: " + query
36
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
37
  outputs = model.generate(**inputs, max_length=512)
38
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
39
+
40
+ # Post-process the SQL query to match the dataset's schema
41
+ sql_query = post_process_sql_query(sql_query)
42
+ return sql_query
43
 
44
  # Create a Gradio interface
45
  interface = gr.Interface(
46
+ fn=generate_sql_from_user_input,
47
+ inputs=gr.Textbox(label="Enter your natural language query"),
48
+ outputs=gr.Textbox(label="Generated SQL Query"),
49
+ title="NL to SQL with T5 using Spider Dataset",
50
+ description="This model generates an SQL query for your natural language input based on the Spider dataset."
51
  )
52
 
53
  # Launch the app