Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
|
|
|
|
4 |
|
5 |
# Load the Spider dataset
|
6 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
for
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
column_names.add(column[1])
|
17 |
|
18 |
# Load tokenizer and model
|
19 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
20 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
21 |
|
22 |
-
def post_process_sql_query(sql_query):
|
23 |
# Modify the SQL query to match the dataset's schema
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
return sql_query
|
32 |
|
33 |
-
def generate_sql_from_user_input(query):
|
34 |
# Generate SQL for the user's query
|
35 |
input_text = "translate English to SQL: " + query
|
36 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
@@ -38,13 +41,13 @@ def generate_sql_from_user_input(query):
|
|
38 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
|
40 |
# Post-process the SQL query to match the dataset's schema
|
41 |
-
sql_query = post_process_sql_query(sql_query)
|
42 |
return sql_query
|
43 |
|
44 |
# Create a Gradio interface
|
45 |
interface = gr.Interface(
|
46 |
-
fn=generate_sql_from_user_input,
|
47 |
-
inputs=gr.Textbox(label="Enter your natural language query"),
|
48 |
outputs=gr.Textbox(label="Generated SQL Query"),
|
49 |
title="NL to SQL using Spider Dataset",
|
50 |
description="This interface generates an SQL query from your natural language input based on the Spider dataset."
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from datasets import load_dataset
|
4 |
+
import json
|
5 |
+
import os
|
6 |
|
7 |
# Load the Spider dataset
|
8 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
9 |
|
10 |
+
# Load the database schemas
|
11 |
+
db_schemas = {}
|
12 |
+
database_dir = 'path/to/database/folder'
|
13 |
+
for filename in os.listdir(database_dir):
|
14 |
+
if filename.endswith('.json'):
|
15 |
+
with open(os.path.join(database_dir, filename), 'r') as file:
|
16 |
+
db_schema = json.load(file)
|
17 |
+
db_schemas[db_schema['db_id']] = db_schema
|
|
|
18 |
|
19 |
# Load tokenizer and model
|
20 |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
21 |
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
22 |
|
23 |
+
def post_process_sql_query(sql_query, db_id):
|
24 |
# Modify the SQL query to match the dataset's schema
|
25 |
+
if db_id in db_schemas:
|
26 |
+
db_schema = db_schemas[db_id]
|
27 |
+
for table_name in db_schema['table_names_original']:
|
28 |
+
if "TABLE" in sql_query:
|
29 |
+
sql_query = sql_query.replace("TABLE", table_name)
|
30 |
+
break # Assuming only one table is referenced in the query
|
31 |
+
for column_name in db_schema['column_names_original']:
|
32 |
+
if "COLUMN" in sql_query:
|
33 |
+
sql_query = sql_query.replace("COLUMN", column_name[1], 1)
|
34 |
return sql_query
|
35 |
|
36 |
+
def generate_sql_from_user_input(query, db_id):
|
37 |
# Generate SQL for the user's query
|
38 |
input_text = "translate English to SQL: " + query
|
39 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
|
|
41 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
|
43 |
# Post-process the SQL query to match the dataset's schema
|
44 |
+
sql_query = post_process_sql_query(sql_query, db_id)
|
45 |
return sql_query
|
46 |
|
47 |
# Create a Gradio interface
|
48 |
interface = gr.Interface(
|
49 |
+
fn=lambda query, db_id: generate_sql_from_user_input(query, db_id),
|
50 |
+
inputs=[gr.Textbox(label="Enter your natural language query"), gr.Dropdown(label="Select Database ID", choices=list(db_schemas.keys()))],
|
51 |
outputs=gr.Textbox(label="Generated SQL Query"),
|
52 |
title="NL to SQL using Spider Dataset",
|
53 |
description="This interface generates an SQL query from your natural language input based on the Spider dataset."
|