HusnaManakkot commited on
Commit
f38ba4d
·
verified ·
1 Parent(s): 7cbc7f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -21
app.py CHANGED
@@ -1,35 +1,52 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
  from datasets import load_dataset
4
 
5
- # Load tokenizer and model
6
- tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
7
- model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
8
 
9
- # Initialize the pipeline
10
- nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
 
 
 
 
 
11
 
12
- # Load a part of the WikiSQL dataset
13
- wikisql_dataset = load_dataset("wikisql", split='train[:5]')
 
14
 
15
- def generate_sql(query):
16
- results = nl2sql_pipeline(query)
17
- sql_query = results[0]['generated_text']
18
- # Post-process the output to ensure it's a valid SQL query
19
- sql_query = sql_query.replace('<pad>', '').replace('</s>', '').strip()
 
 
 
 
 
20
  return sql_query
21
 
22
- # Use examples from the WikiSQL dataset
23
- example_questions = [(question['question'],) for question in wikisql_dataset]
 
 
 
 
 
 
 
 
24
 
25
  # Create a Gradio interface
26
  interface = gr.Interface(
27
- fn=generate_sql,
28
- inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
29
- outputs="text",
30
- examples=example_questions,
31
- title="NL to SQL with Picard",
32
- description="This model converts natural language queries into SQL using the WikiSQL dataset. Try one of the example questions or enter your own!"
33
  )
34
 
35
  # Launch the app
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  from datasets import load_dataset
4
 
5
+ # Load the WikiSQL dataset
6
+ wikisql_dataset = load_dataset("wikisql", split='train[:100]') # Load a subset of the dataset
 
7
 
8
+ # Extract schema information from the dataset
9
+ table_names = set()
10
+ column_names = set()
11
+ for item in wikisql_dataset:
12
+ table_names.add(item['table']['name'])
13
+ for column in item['table']['header']:
14
+ column_names.add(column)
15
 
16
+ # Load tokenizer and model
17
+ tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
18
+ model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
19
 
20
+ def post_process_sql_query(sql_query):
21
+ # Modify the SQL query to match the dataset's schema
22
+ # This is just an example and might need to be adapted based on the dataset and model output
23
+ for table_name in table_names:
24
+ if "TABLE" in sql_query:
25
+ sql_query = sql_query.replace("TABLE", table_name)
26
+ break # Assuming only one table is referenced in the query
27
+ for column_name in column_names:
28
+ if "COLUMN" in sql_query:
29
+ sql_query = sql_query.replace("COLUMN", column_name, 1)
30
  return sql_query
31
 
32
+ def generate_sql_from_user_input(query):
33
+ # Generate SQL for the user's query
34
+ input_text = "translate English to SQL: " + query
35
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True)
36
+ outputs = model.generate(**inputs, max_length=512)
37
+ sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
38
+
39
+ # Post-process the SQL query to match the dataset's schema
40
+ sql_query = post_process_sql_query(sql_query)
41
+ return sql_query
42
 
43
  # Create a Gradio interface
44
  interface = gr.Interface(
45
+ fn=generate_sql_from_user_input,
46
+ inputs=gr.Textbox(label="Enter your natural language query"),
47
+ outputs=gr.Textbox(label="Generated SQL Query"),
48
+ title="NL to SQL with T5 using WikiSQL Dataset",
49
+ description="This model generates an SQL query for your natural language input based on the WikiSQL dataset."
 
50
  )
51
 
52
  # Launch the app