Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -82,42 +82,46 @@ if uploaded_file is not None:
|
|
| 82 |
# Text query input
|
| 83 |
text_query = st.text_input("Enter your query about the image:")
|
| 84 |
|
|
|
|
|
|
|
| 85 |
if text_query:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# Display results
|
| 123 |
st.subheader("Results:")
|
|
|
|
| 82 |
# Text query input
|
| 83 |
text_query = st.text_input("Enter your query about the image:")
|
| 84 |
|
| 85 |
+
max_new_tokens = st.slider("Max new tokens for response", min_value=100, max_value=1000, value=100, step=10)
|
| 86 |
+
|
| 87 |
if text_query:
|
| 88 |
+
with st.spinner(
|
| 89 |
+
f'Processing your query... This may take a while due to CPU processing. Generating up to {max_new_tokens} tokens.'):
|
| 90 |
+
# Perform RAG search
|
| 91 |
+
results = RAG.search(text_query, k=2)
|
| 92 |
+
|
| 93 |
+
# Process with Qwen2VL model
|
| 94 |
+
messages = [
|
| 95 |
+
{
|
| 96 |
+
"role": "user",
|
| 97 |
+
"content": [
|
| 98 |
+
{
|
| 99 |
+
"type": "image",
|
| 100 |
+
"image": image_path,
|
| 101 |
+
},
|
| 102 |
+
{"type": "text", "text": text_query},
|
| 103 |
+
],
|
| 104 |
+
}
|
| 105 |
+
]
|
| 106 |
+
text = processor.apply_chat_template(
|
| 107 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 108 |
+
)
|
| 109 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 110 |
+
inputs = processor(
|
| 111 |
+
text=[text],
|
| 112 |
+
images=image_inputs,
|
| 113 |
+
videos=video_inputs,
|
| 114 |
+
padding=True,
|
| 115 |
+
return_tensors="pt",
|
| 116 |
+
)
|
| 117 |
+
inputs = inputs.to(device)
|
| 118 |
+
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) # Using the slider value here
|
| 119 |
+
generated_ids_trimmed = [
|
| 120 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 121 |
+
]
|
| 122 |
+
output_text = processor.batch_decode(
|
| 123 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 124 |
+
)
|
| 125 |
|
| 126 |
# Display results
|
| 127 |
st.subheader("Results:")
|