clement-bonnet commited on
Commit
0fd6cea
·
1 Parent(s): a2b9d20

feat: update doc

Browse files
Files changed (1) hide show
  1. app.py +16 -14
app.py CHANGED
@@ -123,11 +123,14 @@ with gr.Blocks(
123
  with gr.Column(elem_classes="container"):
124
  gr.Markdown(
125
  """
126
- # Interactive Image Generation
127
 
128
- ## Method Overview
129
- This interactive demo showcases our novel image generation method that uses coordinate-based control.
130
- The process allows precise control over generated patterns through a coordinate-conditioning mechanism.
 
 
 
131
  """
132
  )
133
 
@@ -144,12 +147,13 @@ with gr.Blocks(
144
  gr.Markdown(
145
  """
146
  ### How to Use
147
- 1. Choose a pattern generation task using the radio buttons
148
- 2. View the target pattern for your selected task
149
- 3. Click anywhere in the heatmap to specify coordinates in the latent space
150
- 4. See the generated image based on your selection
 
151
 
152
- Use the "Find Optimal Latent" button to automatically select pre-determined optimal coordinates.
153
  """
154
  )
155
 
@@ -167,9 +171,9 @@ with gr.Blocks(
167
  interactive=True,
168
  )
169
 
170
- gr.Markdown("### Coordinate Selector")
171
  gr.Markdown(
172
- "Click anywhere in the image below to select (x, y) coordinates in the latent space"
173
  )
174
 
175
  with gr.Column(elem_classes="coordinate-container"):
@@ -188,7 +192,7 @@ with gr.Blocks(
188
 
189
  # Right column for images
190
  with gr.Column(scale=1):
191
- gr.Markdown("### Reference Pattern")
192
  with gr.Column(elem_classes="image-preview-container"):
193
  reference_image = gr.Image(
194
  value="imgs/pattern_0.png",
@@ -211,8 +215,6 @@ with gr.Blocks(
211
  gr.Markdown(
212
  """
213
  ### Technical Details
214
- Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns.
215
- The heatmap visualization shows the distribution of pattern characteristics across the latent space.
216
 
217
  For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
218
  """
 
123
  with gr.Column(elem_classes="container"):
124
  gr.Markdown(
125
  """
126
+ # Interactive Visualization of a Latent Program Network (LPN)
127
 
128
+ ## Introduction
129
+ The LPN is an architecture for inductive program synthesis that builds in test-time adaption
130
+ by learning a latent space that can be used for search.
131
+ This interactive demo showcases a latent traversal of the LPN in the latent program space.
132
+ More specifically, the decoder of the LPN is conditioned on a latent vector representing
133
+ an abstract program, which is then used to generate an output.
134
  """
135
  )
136
 
 
147
  gr.Markdown(
148
  """
149
  ### How to Use
150
+ 1. Choose a pattern task using the radio buttons
151
+ 2. View the input-output pairs for your selected task
152
+ 3. The goal is to find the latent that will generate the right third image for the given input
153
+ 4. Click anywhere in the heatmap to specify coordinates in the latent space
154
+ 5. See the generated image based on your selection
155
 
156
+ Use the "Find Optimal Latent" button to find the latent that maximizes likelihood of generating the other input-output pairs.
157
  """
158
  )
159
 
 
171
  interactive=True,
172
  )
173
 
174
+ gr.Markdown("### Latent Space Search")
175
  gr.Markdown(
176
+ "Click anywhere in the 2D latent space below to condition the decoder on a specific latent vector."
177
  )
178
 
179
  with gr.Column(elem_classes="coordinate-container"):
 
192
 
193
  # Right column for images
194
  with gr.Column(scale=1):
195
+ gr.Markdown("### Input-Output Pairs")
196
  with gr.Column(elem_classes="image-preview-container"):
197
  reference_image = gr.Image(
198
  value="imgs/pattern_0.png",
 
215
  gr.Markdown(
216
  """
217
  ### Technical Details
 
 
218
 
219
  For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
220
  """