Spaces:
Running
Running
Commit
·
e1b10c7
1
Parent(s):
4754e4d
feat: resize page
Browse files
app.py
CHANGED
@@ -8,9 +8,7 @@ TASK_OPTIMAL_COORDS = {0: (325, 326), 1: (59, 1126), 2: (47, 102), 3: (497, 933)
|
|
8 |
|
9 |
|
10 |
def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
|
11 |
-
"""
|
12 |
-
Creates an image with a marker at the specified coordinates
|
13 |
-
"""
|
14 |
base_image = Image.open(image_path)
|
15 |
marked_image = base_image.copy()
|
16 |
draw = ImageDraw.Draw(marked_image)
|
@@ -22,39 +20,24 @@ def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
|
|
22 |
|
23 |
|
24 |
def update_reference_image(choice: int) -> tuple[str, int, str]:
|
25 |
-
"""
|
26 |
-
Update the reference image display based on radio button selection
|
27 |
-
Returns the image path, selected index, and corresponding heatmap
|
28 |
-
"""
|
29 |
image_path = f"imgs/pattern_{choice}.png"
|
30 |
heatmap_path = f"imgs/heatmap_{choice}.png"
|
31 |
return image_path, choice, heatmap_path
|
32 |
|
33 |
|
34 |
def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]:
|
35 |
-
"""
|
36 |
-
Update the coordinate selector with the marker
|
37 |
-
Returns the marked image and the coordinates for the next function
|
38 |
-
"""
|
39 |
x, y = evt.index[0], evt.index[1]
|
40 |
heatmap_path = f"imgs/heatmap_{image_idx}.png"
|
41 |
return create_marker_overlay(heatmap_path, x, y), (x, y)
|
42 |
|
43 |
|
44 |
def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image:
|
45 |
-
"""
|
46 |
-
Generate the output image based on the selected coordinates
|
47 |
-
"""
|
48 |
x, y = coords
|
49 |
x_norm, y_norm = x / 1155, y / 1155
|
50 |
return generate_image(image_idx, x_norm, y_norm)
|
51 |
|
52 |
|
53 |
def find_optimal_latent(image_idx: int) -> tuple[Image.Image, tuple[int, int], Image.Image]:
|
54 |
-
"""
|
55 |
-
Simulate clicking at the optimal coordinates for the current task
|
56 |
-
Returns the marked heatmap, coordinates, and generated output image
|
57 |
-
"""
|
58 |
x, y = TASK_OPTIMAL_COORDS[image_idx]
|
59 |
heatmap_path = f"imgs/heatmap_{image_idx}.png"
|
60 |
marked_heatmap = create_marker_overlay(heatmap_path, x, y)
|
@@ -64,32 +47,69 @@ def find_optimal_latent(image_idx: int) -> tuple[Image.Image, tuple[int, int], I
|
|
64 |
|
65 |
with gr.Blocks(
|
66 |
css="""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
.radio-container {
|
68 |
-
width:
|
|
|
69 |
margin-left: auto !important;
|
70 |
margin-right: auto !important;
|
71 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
.coordinate-container {
|
73 |
-
width:
|
74 |
-
|
75 |
position: relative !important;
|
|
|
|
|
|
|
76 |
}
|
77 |
.coordinate-container img {
|
78 |
width: 100% !important;
|
79 |
height: 100% !important;
|
80 |
object-fit: contain !important;
|
81 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
.documentation {
|
83 |
margin-top: 2rem !important;
|
84 |
padding: 1rem !important;
|
85 |
background-color: #f8f9fa !important;
|
86 |
border-radius: 8px !important;
|
87 |
}
|
88 |
-
.button-container {
|
89 |
-
display: flex !important;
|
90 |
-
justify-content: center !important;
|
91 |
-
width: 600px !important;
|
92 |
-
}
|
93 |
.optimal-button {
|
94 |
margin-top: 1rem !important;
|
95 |
margin-bottom: 1rem !important;
|
@@ -97,124 +117,123 @@ with gr.Blocks(
|
|
97 |
}
|
98 |
"""
|
99 |
) as demo:
|
100 |
-
gr.
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Add the diagram at the top
|
111 |
-
gr.Image(
|
112 |
-
value="imgs/lpn_diagram.png",
|
113 |
-
show_label=False,
|
114 |
-
interactive=False,
|
115 |
-
show_download_button=False,
|
116 |
-
show_fullscreen_button=False,
|
117 |
-
)
|
118 |
-
|
119 |
-
gr.Markdown(
|
120 |
-
"""
|
121 |
-
### How to Use
|
122 |
-
1. Choose a pattern generation task using the radio buttons
|
123 |
-
2. View the target pattern for your selected task
|
124 |
-
3. Click anywhere in the heatmap to specify coordinates in the latent space
|
125 |
-
4. See the generated image based on your selection
|
126 |
-
|
127 |
-
Use the "Find Optimal Latent" button to automatically select pre-determined optimal coordinates.
|
128 |
-
"""
|
129 |
-
)
|
130 |
-
|
131 |
-
with gr.Row():
|
132 |
-
# Left column
|
133 |
-
with gr.Column(scale=3):
|
134 |
-
selected_idx = gr.State(value=0)
|
135 |
-
coords = gr.State()
|
136 |
-
|
137 |
-
with gr.Column(elem_classes="radio-container"):
|
138 |
-
task_select = gr.Radio(
|
139 |
-
choices=["Task 1", "Task 2", "Task 3", "Task 4"],
|
140 |
-
value="Task 1",
|
141 |
-
label="Select Task",
|
142 |
-
interactive=True,
|
143 |
-
)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
value="imgs/
|
148 |
show_label=False,
|
149 |
interactive=False,
|
150 |
-
height=300,
|
151 |
-
width=450,
|
152 |
show_download_button=False,
|
153 |
show_fullscreen_button=False,
|
154 |
)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns.
|
190 |
-
The heatmap visualization shows the distribution of pattern characteristics across the latent space.
|
191 |
-
|
192 |
-
For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
|
193 |
-
"""
|
194 |
)
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
)
|
213 |
-
|
214 |
-
optimal_button.click(
|
215 |
-
fn=find_optimal_latent,
|
216 |
-
inputs=[selected_idx],
|
217 |
-
outputs=[coord_selector, coords, output_image],
|
218 |
-
)
|
219 |
|
220 |
demo.launch()
|
|
|
8 |
|
9 |
|
10 |
def create_marker_overlay(image_path: str, x: int, y: int) -> Image.Image:
|
11 |
+
"""Creates an image with a marker at the specified coordinates"""
|
|
|
|
|
12 |
base_image = Image.open(image_path)
|
13 |
marked_image = base_image.copy()
|
14 |
draw = ImageDraw.Draw(marked_image)
|
|
|
20 |
|
21 |
|
22 |
def update_reference_image(choice: int) -> tuple[str, int, str]:
|
|
|
|
|
|
|
|
|
23 |
image_path = f"imgs/pattern_{choice}.png"
|
24 |
heatmap_path = f"imgs/heatmap_{choice}.png"
|
25 |
return image_path, choice, heatmap_path
|
26 |
|
27 |
|
28 |
def update_marker(image_idx: int, evt: gr.SelectData) -> tuple[Image.Image, tuple[int, int]]:
|
|
|
|
|
|
|
|
|
29 |
x, y = evt.index[0], evt.index[1]
|
30 |
heatmap_path = f"imgs/heatmap_{image_idx}.png"
|
31 |
return create_marker_overlay(heatmap_path, x, y), (x, y)
|
32 |
|
33 |
|
34 |
def generate_output_image(image_idx: int, coords: tuple[int, int]) -> Image.Image:
|
|
|
|
|
|
|
35 |
x, y = coords
|
36 |
x_norm, y_norm = x / 1155, y / 1155
|
37 |
return generate_image(image_idx, x_norm, y_norm)
|
38 |
|
39 |
|
40 |
def find_optimal_latent(image_idx: int) -> tuple[Image.Image, tuple[int, int], Image.Image]:
|
|
|
|
|
|
|
|
|
41 |
x, y = TASK_OPTIMAL_COORDS[image_idx]
|
42 |
heatmap_path = f"imgs/heatmap_{image_idx}.png"
|
43 |
marked_heatmap = create_marker_overlay(heatmap_path, x, y)
|
|
|
47 |
|
48 |
with gr.Blocks(
|
49 |
css="""
|
50 |
+
.container {
|
51 |
+
max-width: 1000px !important;
|
52 |
+
width: 100% !important;
|
53 |
+
margin-left: auto !important;
|
54 |
+
margin-right: auto !important;
|
55 |
+
padding: 0 1rem !important;
|
56 |
+
}
|
57 |
+
.diagram-container {
|
58 |
+
width: 80% !important;
|
59 |
+
max-width: 800px !important;
|
60 |
+
margin-left: auto !important;
|
61 |
+
margin-right: auto !important;
|
62 |
+
}
|
63 |
+
.diagram-container img {
|
64 |
+
width: 100% !important;
|
65 |
+
height: auto !important;
|
66 |
+
object-fit: contain !important;
|
67 |
+
}
|
68 |
.radio-container {
|
69 |
+
width: 100% !important;
|
70 |
+
max-width: 450px !important;
|
71 |
margin-left: auto !important;
|
72 |
margin-right: auto !important;
|
73 |
}
|
74 |
+
.image-container {
|
75 |
+
width: 100% !important;
|
76 |
+
aspect-ratio: 1 !important;
|
77 |
+
max-width: 450px !important;
|
78 |
+
margin-left: auto !important;
|
79 |
+
margin-right: auto !important;
|
80 |
+
}
|
81 |
+
.image-container img {
|
82 |
+
width: 100% !important;
|
83 |
+
height: 100% !important;
|
84 |
+
object-fit: contain !important;
|
85 |
+
}
|
86 |
.coordinate-container {
|
87 |
+
width: 100% !important;
|
88 |
+
aspect-ratio: 1 !important;
|
89 |
position: relative !important;
|
90 |
+
max-width: 600px !important;
|
91 |
+
margin-left: auto !important;
|
92 |
+
margin-right: auto !important;
|
93 |
}
|
94 |
.coordinate-container img {
|
95 |
width: 100% !important;
|
96 |
height: 100% !important;
|
97 |
object-fit: contain !important;
|
98 |
}
|
99 |
+
.button-container {
|
100 |
+
display: flex !important;
|
101 |
+
justify-content: center !important;
|
102 |
+
width: 100% !important;
|
103 |
+
max-width: 600px !important;
|
104 |
+
margin-left: auto !important;
|
105 |
+
margin-right: auto !important;
|
106 |
+
}
|
107 |
.documentation {
|
108 |
margin-top: 2rem !important;
|
109 |
padding: 1rem !important;
|
110 |
background-color: #f8f9fa !important;
|
111 |
border-radius: 8px !important;
|
112 |
}
|
|
|
|
|
|
|
|
|
|
|
113 |
.optimal-button {
|
114 |
margin-top: 1rem !important;
|
115 |
margin-bottom: 1rem !important;
|
|
|
117 |
}
|
118 |
"""
|
119 |
) as demo:
|
120 |
+
with gr.Column(elem_classes="container"):
|
121 |
+
gr.Markdown(
|
122 |
+
"""
|
123 |
+
# Interactive Image Generation
|
124 |
+
|
125 |
+
## Method Overview
|
126 |
+
This interactive demo showcases our novel image generation method that uses coordinate-based control.
|
127 |
+
The process allows precise control over generated patterns through a coordinate-conditioning mechanism.
|
128 |
+
"""
|
129 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
with gr.Column(elem_classes="diagram-container"):
|
132 |
+
gr.Image(
|
133 |
+
value="imgs/lpn_diagram.png",
|
134 |
show_label=False,
|
135 |
interactive=False,
|
|
|
|
|
136 |
show_download_button=False,
|
137 |
show_fullscreen_button=False,
|
138 |
)
|
139 |
|
140 |
+
gr.Markdown(
|
141 |
+
"""
|
142 |
+
### How to Use
|
143 |
+
1. Choose a pattern generation task using the radio buttons
|
144 |
+
2. View the target pattern for your selected task
|
145 |
+
3. Click anywhere in the heatmap to specify coordinates in the latent space
|
146 |
+
4. See the generated image based on your selection
|
147 |
+
|
148 |
+
Use the "Find Optimal Latent" button to automatically select pre-determined optimal coordinates.
|
149 |
+
"""
|
150 |
+
)
|
151 |
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column(scale=3):
|
154 |
+
selected_idx = gr.State(value=0)
|
155 |
+
coords = gr.State()
|
156 |
+
|
157 |
+
with gr.Column(elem_classes="radio-container"):
|
158 |
+
task_select = gr.Radio(
|
159 |
+
choices=["Task 1", "Task 2", "Task 3", "Task 4"],
|
160 |
+
value="Task 1",
|
161 |
+
label="Select Task",
|
162 |
+
interactive=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
gr.Markdown("### Reference Pattern")
|
166 |
+
with gr.Column(elem_classes="image-container"):
|
167 |
+
reference_image = gr.Image(
|
168 |
+
value="imgs/pattern_0.png",
|
169 |
+
show_label=False,
|
170 |
+
interactive=False,
|
171 |
+
show_download_button=False,
|
172 |
+
show_fullscreen_button=False,
|
173 |
+
)
|
174 |
+
|
175 |
+
gr.Markdown("### Generated Output")
|
176 |
+
with gr.Column(elem_classes="image-container"):
|
177 |
+
output_image = gr.Image(
|
178 |
+
show_label=False,
|
179 |
+
interactive=False,
|
180 |
+
show_download_button=False,
|
181 |
+
show_fullscreen_button=False,
|
182 |
+
)
|
183 |
+
|
184 |
+
with gr.Column(scale=4):
|
185 |
+
gr.Markdown("### Coordinate Selector")
|
186 |
+
gr.Markdown(
|
187 |
+
"Click anywhere in the image below to select (x, y) coordinates in the latent space"
|
188 |
)
|
189 |
|
190 |
+
with gr.Column(elem_classes="coordinate-container"):
|
191 |
+
coord_selector = gr.Image(
|
192 |
+
value="imgs/heatmap_0.png",
|
193 |
+
show_label=False,
|
194 |
+
interactive=False,
|
195 |
+
sources=[],
|
196 |
+
container=True,
|
197 |
+
show_download_button=False,
|
198 |
+
show_fullscreen_button=False,
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.Column(elem_classes="button-container"):
|
202 |
+
optimal_button = gr.Button("Find Optimal Latent", elem_classes="optimal-button")
|
203 |
+
|
204 |
+
with gr.Column(elem_classes="documentation"):
|
205 |
+
gr.Markdown(
|
206 |
+
"""
|
207 |
+
### Technical Details
|
208 |
+
Our approach uses a novel coordinate-conditioning mechanism that allows precise control over the generated patterns.
|
209 |
+
The heatmap visualization shows the distribution of pattern characteristics across the latent space.
|
210 |
+
|
211 |
+
For more information, please refer to our [paper](https://arxiv.org/pdf/2411.08706) or GitHub [repository](https://github.com/clement-bonnet/lpn).
|
212 |
+
"""
|
213 |
+
)
|
214 |
|
215 |
+
# Event handlers
|
216 |
+
task_select.change(
|
217 |
+
fn=lambda x: update_reference_image(TASK_TO_INDEX[x]),
|
218 |
+
inputs=[task_select],
|
219 |
+
outputs=[reference_image, selected_idx, coord_selector],
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
|
222 |
+
coord_selector.select(
|
223 |
+
fn=update_marker,
|
224 |
+
inputs=[selected_idx],
|
225 |
+
outputs=[coord_selector, coords],
|
226 |
+
trigger_mode="multiple",
|
227 |
+
).then(
|
228 |
+
fn=generate_output_image,
|
229 |
+
inputs=[selected_idx, coords],
|
230 |
+
outputs=output_image,
|
231 |
+
)
|
232 |
+
|
233 |
+
optimal_button.click(
|
234 |
+
fn=find_optimal_latent,
|
235 |
+
inputs=[selected_idx],
|
236 |
+
outputs=[coord_selector, coords, output_image],
|
237 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
demo.launch()
|