File size: 12,651 Bytes
b8e8c93
 
 
d38c074
 
 
 
 
 
 
b8e8c93
d38c074
b8e8c93
 
 
 
 
 
 
 
8b42620
b8e8c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b42620
b8e8c93
 
 
 
 
 
 
 
 
ae9059f
 
 
 
8b42620
 
 
 
b8e8c93
 
 
 
ae9059f
 
 
b8e8c93
 
 
 
 
 
ae9059f
 
 
8b42620
 
 
ae9059f
b8e8c93
 
 
3aae85b
b8e8c93
 
 
 
3aae85b
b8e8c93
 
 
 
 
 
 
3aae85b
b8e8c93
 
 
 
 
 
 
 
 
 
ae9059f
 
 
 
 
 
 
 
 
 
 
 
 
8b42620
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9059f
b8e8c93
 
 
8b42620
b8e8c93
8b42620
b8e8c93
 
 
 
 
d38c074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b42620
 
 
 
 
 
 
 
 
 
 
d38c074
 
 
 
 
8b42620
 
 
 
d38c074
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import pandas as pd
import yaml
import numpy as np
import argparse
from execute_evaluation import evaluate
import logging
import os
import json
import sys
from mteb import MTEB

def add_model():
    """
    Esto actualiza el archivo del cual app.py coge la información para crear la leaderboard. Entonces, cuando
    alguien quiera añadir un nuevo modelo, tiene que ejecutar este archivo. 

    1. Leemos el CSV, sacamos información y añadimos simplemente una nueva row. 
    
    """
    # Initialize an empty DataFrame
    df = pd.DataFrame(columns=['dataset_name', 'Accuracy', 'Spearman','V_measure', 'ndcg_at_10', 'Category'])

    metadata_archive = 'mteb_metadata.yaml'

    with open(metadata_archive, 'r') as file:
        for index, data in enumerate(yaml.safe_load_all(file)):
            if index == 0:
                model_index_list = data.get('model-index', [])
                model_name = model_index_list[0].get('name')
                results_list = model_index_list[0].get('results', [])
            
                if results_list:  
                    for i in range(len(results_list)):
                        task = results_list[i].get('task', {})
                        task_name = task.get("type")
                        dataset_name = results_list[i]['dataset']['name']
                        
                        # Initialize the row with NaN values
                        row = {'dataset_name': dataset_name, 'Accuracy': None, 'Spearman': None, 'V_measure': None, 'ndcg_at_10': None}
                        
                        if task_name == "Classification":
                            accuracy = next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'accuracy'), None)
                            row['Accuracy'] = accuracy
                            row['Category'] = "Classification"
                        elif task_name == "STS":
                            spearman = next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'cos_sim_spearman'), None)
                            row['Spearman'] = spearman
                            row["Category"] = "STS"
                        elif task_name == "Clustering":
                            v_measure =  next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'v_measure'), None)
                            row['V_measure'] = v_measure
                            row['Category'] = "Clustering"
                        elif task_name == "Retrieval":
                            ndcg_at_10 =  next((metric.get('value') for metric in results_list[i].get('metrics', []) if metric.get('type') == 'ndcg_at_10'), None)
                            row['ndcg_at_10'] = ndcg_at_10
                            row['Category'] = "Retrieval"
                        # Append the row to the DataFrame using pd.concat
                        new_df = pd.DataFrame([row])
                        df = pd.concat([df, new_df], ignore_index=True)

    print(df)
    

    df['Accuracy'] = pd.to_numeric(df['Accuracy'], errors='coerce')
    classification_average = round(df.loc[df['Category'] == 'Classification', 'Accuracy'].mean(),2)

    df['Spearman'] = pd.to_numeric(df['Spearman'], errors='coerce')
    sts_spearman_average = round(df.loc[df['Category'] == 'STS', 'Spearman'].mean(),2)

    df['V_measure'] = pd.to_numeric(df['V_measure'], errors='coerce')
    clustering_v_measure_average = round(df.loc[df['Category'] == 'Clustering', 'V_measure'].mean(),2)

    df['ndcg_at_10'] = pd.to_numeric(df['ndcg_at_10'], errors='coerce')
    retrieval_average = round(df.loc[df['Category'] == 'Retrieval', 'ndcg_at_10'].mean(),2)

    
    ## CLASSIFICATION
    classification_dataframe = pd.read_csv('../data/classification.csv')
    classification_df = df[df['Category']== 'Classification']
    new_row_data = {'Model name': model_name, 'Average': classification_average}
    for index, row in classification_df.iterrows():
        column_name = row['dataset_name']
        accuracy_value = row['Accuracy']
        new_row_data[column_name] = round(accuracy_value,2)
    
    new_row_df = pd.DataFrame(new_row_data,index=[0])
    classification_dataframe = pd.concat([classification_dataframe,new_row_df],ignore_index=True)
    classification_dataframe.to_csv("../data/classification.csv",index=False)
    
    ## STS
    sts_dataframe = pd.read_csv('../data/sts.csv')
    sts_df = df[df['Category']=='STS']
    new_row_data = {'Model name': model_name, 'Average': sts_spearman_average}

    for index, row in sts_df.iterrows():
        column_name = row['dataset_name']
        spearman_value = row['Spearman']
        new_row_data[column_name] = round(spearman_value,2)
    
    new_row_df = pd.DataFrame(new_row_data,index = [0])
    sts_dataframe = pd.concat([sts_dataframe,new_row_df],ignore_index=True)
    sts_dataframe.to_csv('../data/sts.csv',index=False)

    ## Clustering 
    clustering_dataframe = pd.read_csv("../data/clustering.csv")
    clustering_df = df[df['Category']=='Clustering']
    new_row_data = {'Model name': model_name, 'Average': clustering_v_measure_average}
    for index, row in clustering_df.iterrows():
        column_name = row['dataset_name']
        v_measure_value = row['V_measure']
        new_row_data[column_name] = round(v_measure_value,2)

    new_row_df = pd.DataFrame(new_row_data,index = [0])
    clustering_dataframe = pd.concat([clustering_dataframe,new_row_df],ignore_index=True)
    clustering_dataframe.to_csv('../data/clustering.csv',index=False)

    ## Retrieval
    retrieval_dataframe = pd.read_csv("../data/retrieval.csv")
    retrieval_df = df[df['Category']=='Retrieval']
    new_row_data = {'Model name': model_name, 'Average': retrieval_average}
    for index, row in retrieval_df.iterrows():
        column_name = row['dataset_name']
        ndcg_at_10_value = row['ndcg_at_10']
        new_row_data[column_name] = round(ndcg_at_10_value,2)

    new_row_df = pd.DataFrame(new_row_data,index = [0])
    retrieval_dataframe = pd.concat([retrieval_dataframe,new_row_df],ignore_index=True)
    retrieval_dataframe.to_csv('../data/retrieval.csv',index=False)



    ## GENERAL
    general_dataframe = pd.read_csv("../data/general.csv")

    average = round(np.mean([classification_average,sts_spearman_average,clustering_v_measure_average,retrieval_average]),2)
    ## TODO: solucionar la meta-data como Model Size o Embedding Dimensions. 
    new_instance = {'Model name':model_name, 'Model Size (GB)': None, 'Embedding Dimensions': None, 'Average':average, 'Classification Average': classification_average, 'Clustering Average': clustering_v_measure_average, 'STS Average': sts_spearman_average, 'Retrieval Average': retrieval_average}
    new_row_df = pd.DataFrame(new_instance, index=[0])
    general_dataframe = pd.concat([general_dataframe, new_row_df], ignore_index=True)
    general_dataframe.to_csv("../data/general.csv",index=False)


def results_to_yaml(results_folder):

    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)


    
    model_name = results_folder.split("/")[-1]

    all_results = {}

    for file_name in os.listdir(results_folder):
        if not file_name.endswith(".json"):
            logger.info(f"Skipping non-json {file_name}")
            raise ValueError("This is not the proper folder. It does not contain the corresponding Json files.")
            continue
        with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f:
            results = json.load(f)
            all_results = {**all_results, **{file_name.replace(".json", ""): results}}

    # Use "train" split instead
    TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
    # Use "validation" split instead
    VALIDATION_SPLIT = ["AFQMC", "Cmnli", "IFlyTek", "TNews", "MSMARCO", "MultilingualSentiment", "Ocnli"]
    # Use "dev" split instead
    DEV_SPLIT = ["CmedqaRetrieval", "CovidRetrieval", "DuRetrieval", "EcomRetrieval", "MedicalRetrieval", "MMarcoReranking", "MMarcoRetrieval", "MSMARCO", "T2Reranking", "T2Retrieval", "VideoRetrieval"]

    MARKER = "---"
    TAGS = "tags:"
    MTEB_TAG = "- mteb"
    HEADER = "model-index:"
    MODEL = f"- name: {model_name}"
    RES = "  results:"

    META_STRING = "\n".join([MARKER, TAGS, MTEB_TAG, HEADER, MODEL, RES])


    ONE_TASK = "  - task:\n      type: {}\n    dataset:\n      type: {}\n      name: {}\n      config: {}\n      split: {}\n      revision: {}\n    metrics:"
    ONE_METRIC = "    - type: {}\n      value: {}"
    SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"]

    for ds_name, res_dict in sorted(all_results.items()):
        mteb_desc = (
            MTEB(tasks=[ds_name.replace("CQADupstackRetrieval", "CQADupstackAndroidRetrieval")]).tasks[0].description
        )
        hf_hub_name = mteb_desc.get("hf_hub_name", mteb_desc.get("beir_name"))
        if "CQADupstack" in ds_name:
            hf_hub_name = "BeIR/cqadupstack"
        mteb_type = mteb_desc["type"]
        revision = res_dict.get("dataset_revision")  # Okay if it's None
        split = "test"
        if (ds_name in TRAIN_SPLIT) and ("train" in res_dict):
            split = "train"
        elif (ds_name in VALIDATION_SPLIT) and ("validation" in res_dict):
            split = "validation"
        elif (ds_name in DEV_SPLIT) and ("dev" in res_dict):
            split = "dev"
        elif "test" not in res_dict:
            logger.info(f"Skipping {ds_name} as split {split} not present.")
            continue
        res_dict = res_dict.get(split)
        for lang in mteb_desc["eval_langs"]:
            mteb_name = f"MTEB {ds_name}"
            mteb_name += f" ({lang})" if len(mteb_desc["eval_langs"]) > 1 else ""
            # For English there is no language key if it's the only language
            test_result_lang = res_dict.get(lang) if len(mteb_desc["eval_langs"]) > 1 else res_dict
            # Skip if the language was not found but it has other languages
            if test_result_lang is None:
                continue
            META_STRING += "\n" + ONE_TASK.format(
                mteb_type, hf_hub_name, mteb_name, lang if len(mteb_desc["eval_langs"]) > 1 else "default", split, revision
            )
            for metric, score in test_result_lang.items():
                if not isinstance(score, dict):
                    score = {metric: score}
                for sub_metric, sub_score in score.items():
                    if any([x in sub_metric for x in SKIP_KEYS]):
                        continue
                    META_STRING += "\n" + ONE_METRIC.format(
                        f"{metric}_{sub_metric}" if metric != sub_metric else metric,
                        # All MTEB scores are 0-1, multiply them by 100 for 3 reasons:
                        # 1) It's easier to visually digest (You need two chars less: "0.1" -> "1")
                        # 2) Others may multiply them by 100, when building on MTEB making it confusing what the range is
                        # This happend with Text and Code Embeddings paper (OpenAI) vs original BEIR paper
                        # 3) It's accepted practice (SuperGLUE, GLUE are 0-100)
                        sub_score * 100,
                    )

    META_STRING += "\n" + MARKER
    if os.path.exists(f"./mteb_metadata.yaml"):
        logger.warning("Overwriting mteb_metadata.md")
    with open(f"./mteb_metadata.yaml", "w") as f:
        f.write(META_STRING)


def main():
#     if args.execute_eval:
#         output_folder = evaluate(args.model_id)
#         #results_to_yaml(output_folder)
#         add_model()
#     else:
    # if args.output_folder == None and args.already_yaml == False:
    #     raise ValueError("You must indicate where your results are located")
    # else: 
        #results_to_yaml(args.output_folder)
    add_model()
    print('Model added')


if __name__ == "__main__":
    
    parser = argparse.ArgumentParser(description="Select the model that you want to add to the Leaderboard.")
    #parser.add_argument("--model_id", type=str, required=True, help="HuggingFace model path that you want to evaluate.")
    #parser.add_argument("--execute_eval",type=bool, default=False, help="Select if you want to execute evaluation.")
    #parser.add_argument("--output_folder", type=str, help = "Select the folder in which the results are stored.")
    #parser.add_argument("--already_yaml",default=False, help="Select if you already have the yaml file.")
    args = parser.parse_args()
    main()