Spaces:
Sleeping
Sleeping
| """ | |
| Cuthill-McKee ordering of graph nodes to produce sparse matrices | |
| """ | |
| from collections import deque | |
| from operator import itemgetter | |
| import networkx as nx | |
| from ..utils import arbitrary_element | |
| __all__ = ["cuthill_mckee_ordering", "reverse_cuthill_mckee_ordering"] | |
| def cuthill_mckee_ordering(G, heuristic=None): | |
| """Generate an ordering (permutation) of the graph nodes to make | |
| a sparse matrix. | |
| Uses the Cuthill-McKee heuristic (based on breadth-first search) [1]_. | |
| Parameters | |
| ---------- | |
| G : graph | |
| A NetworkX graph | |
| heuristic : function, optional | |
| Function to choose starting node for RCM algorithm. If None | |
| a node from a pseudo-peripheral pair is used. A user-defined function | |
| can be supplied that takes a graph object and returns a single node. | |
| Returns | |
| ------- | |
| nodes : generator | |
| Generator of nodes in Cuthill-McKee ordering. | |
| Examples | |
| -------- | |
| >>> from networkx.utils import cuthill_mckee_ordering | |
| >>> G = nx.path_graph(4) | |
| >>> rcm = list(cuthill_mckee_ordering(G)) | |
| >>> A = nx.adjacency_matrix(G, nodelist=rcm) | |
| Smallest degree node as heuristic function: | |
| >>> def smallest_degree(G): | |
| ... return min(G, key=G.degree) | |
| >>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree)) | |
| See Also | |
| -------- | |
| reverse_cuthill_mckee_ordering | |
| Notes | |
| ----- | |
| The optimal solution the bandwidth reduction is NP-complete [2]_. | |
| References | |
| ---------- | |
| .. [1] E. Cuthill and J. McKee. | |
| Reducing the bandwidth of sparse symmetric matrices, | |
| In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. | |
| http://doi.acm.org/10.1145/800195.805928 | |
| .. [2] Steven S. Skiena. 1997. The Algorithm Design Manual. | |
| Springer-Verlag New York, Inc., New York, NY, USA. | |
| """ | |
| for c in nx.connected_components(G): | |
| yield from connected_cuthill_mckee_ordering(G.subgraph(c), heuristic) | |
| def reverse_cuthill_mckee_ordering(G, heuristic=None): | |
| """Generate an ordering (permutation) of the graph nodes to make | |
| a sparse matrix. | |
| Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) | |
| [1]_. | |
| Parameters | |
| ---------- | |
| G : graph | |
| A NetworkX graph | |
| heuristic : function, optional | |
| Function to choose starting node for RCM algorithm. If None | |
| a node from a pseudo-peripheral pair is used. A user-defined function | |
| can be supplied that takes a graph object and returns a single node. | |
| Returns | |
| ------- | |
| nodes : generator | |
| Generator of nodes in reverse Cuthill-McKee ordering. | |
| Examples | |
| -------- | |
| >>> from networkx.utils import reverse_cuthill_mckee_ordering | |
| >>> G = nx.path_graph(4) | |
| >>> rcm = list(reverse_cuthill_mckee_ordering(G)) | |
| >>> A = nx.adjacency_matrix(G, nodelist=rcm) | |
| Smallest degree node as heuristic function: | |
| >>> def smallest_degree(G): | |
| ... return min(G, key=G.degree) | |
| >>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree)) | |
| See Also | |
| -------- | |
| cuthill_mckee_ordering | |
| Notes | |
| ----- | |
| The optimal solution the bandwidth reduction is NP-complete [2]_. | |
| References | |
| ---------- | |
| .. [1] E. Cuthill and J. McKee. | |
| Reducing the bandwidth of sparse symmetric matrices, | |
| In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. | |
| http://doi.acm.org/10.1145/800195.805928 | |
| .. [2] Steven S. Skiena. 1997. The Algorithm Design Manual. | |
| Springer-Verlag New York, Inc., New York, NY, USA. | |
| """ | |
| return reversed(list(cuthill_mckee_ordering(G, heuristic=heuristic))) | |
| def connected_cuthill_mckee_ordering(G, heuristic=None): | |
| # the cuthill mckee algorithm for connected graphs | |
| if heuristic is None: | |
| start = pseudo_peripheral_node(G) | |
| else: | |
| start = heuristic(G) | |
| visited = {start} | |
| queue = deque([start]) | |
| while queue: | |
| parent = queue.popleft() | |
| yield parent | |
| nd = sorted(G.degree(set(G[parent]) - visited), key=itemgetter(1)) | |
| children = [n for n, d in nd] | |
| visited.update(children) | |
| queue.extend(children) | |
| def pseudo_peripheral_node(G): | |
| # helper for cuthill-mckee to find a node in a "pseudo peripheral pair" | |
| # to use as good starting node | |
| u = arbitrary_element(G) | |
| lp = 0 | |
| v = u | |
| while True: | |
| spl = dict(nx.shortest_path_length(G, v)) | |
| l = max(spl.values()) | |
| if l <= lp: | |
| break | |
| lp = l | |
| farthest = (n for n, dist in spl.items() if dist == l) | |
| v, deg = min(G.degree(farthest), key=itemgetter(1)) | |
| return v | |